VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We establish vortex dynamics for the time-dependent Ginzburg–Landau equation for asymptotically large numbers of vortices for the problem without a gauge field and either Dirichlet or Neumann boundary conditions. As our main tool, we establish quantitative bounds on several fundamental quantities, including the kinetic energy, that lead to explicit convergence rates. For dilute vortex liquids, we prove that sequences of solutions converge to the hydrodynamic limit.
@article{10_1017_fms_2014_6,
     author = {MATTHIAS KURZKE and DANIEL SPIRN},
     title = {VORTEX {LIQUIDS} {AND} {THE} {GINZBURG{\textendash}LANDAU} {EQUATION}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.6/}
}
TY  - JOUR
AU  - MATTHIAS KURZKE
AU  - DANIEL SPIRN
TI  - VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.6/
DO  - 10.1017/fms.2014.6
LA  - en
ID  - 10_1017_fms_2014_6
ER  - 
%0 Journal Article
%A MATTHIAS KURZKE
%A DANIEL SPIRN
%T VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.6/
%R 10.1017/fms.2014.6
%G en
%F 10_1017_fms_2014_6
MATTHIAS KURZKE; DANIEL SPIRN. VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.6

Cité par Sources :