VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We establish vortex dynamics for the time-dependent Ginzburg–Landau equation for asymptotically large numbers of vortices for the problem without a gauge field and either Dirichlet or Neumann boundary conditions. As our main tool, we establish quantitative bounds on several fundamental quantities, including the kinetic energy, that lead to explicit convergence rates. For dilute vortex liquids, we prove that sequences of solutions converge to the hydrodynamic limit.
            
            
            
          
        
      @article{10_1017_fms_2014_6,
     author = {MATTHIAS KURZKE and DANIEL SPIRN},
     title = {VORTEX {LIQUIDS} {AND} {THE} {GINZBURG{\textendash}LANDAU} {EQUATION}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.6/}
}
                      
                      
                    MATTHIAS KURZKE; DANIEL SPIRN. VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.6
Cité par Sources :