SUPERBOSONIZATION VIA RIESZ SUPERDISTRIBUTIONS
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              The superbosonization identity of Littelmann, Sommers and Zirnbauer is a new tool for use in studying universality of random matrix ensembles via supersymmetry, which is applicable to non-Gaussian invariant distributions. We give a new conceptual interpretation of this formula, linking it to harmonic superanalysis of Lie supergroups and symmetric superspaces, and in particular, to a supergeneralization of the Riesz distributions. Using the super-Laplace transformation of generalized superfunctions, the theory of which we develop, we reduce the proof to computing the Gindikin gamma function of a Riemannian symmetric superspace, which we determine explicitly.
            
            
            
          
        
      @article{10_1017_fms_2014_5,
     author = {ALEXANDER ALLDRIDGE and ZAIN SHAIKH},
     title = {SUPERBOSONIZATION {VIA} {RIESZ} {SUPERDISTRIBUTIONS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.5/}
}
                      
                      
                    ALEXANDER ALLDRIDGE; ZAIN SHAIKH. SUPERBOSONIZATION VIA RIESZ SUPERDISTRIBUTIONS. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.5
Cité par Sources :