PLANE WAVE STABILITY OF THE SPLIT-STEP FOURIER METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Plane wave solutions to the cubic nonlinear Schrödinger equation on a torus have recently been shown to behave orbitally stable. Under generic perturbations of the initial data that are small in a high-order Sobolev norm, plane waves are stable over long times that extend to arbitrary negative powers of the smallness parameter. The present paper studies the question as to whether numerical discretizations by the split-step Fourier method inherit such a generic long-time stability property. This can indeed be shown under a condition of linear stability and a nonresonance condition. They can both be verified in the case of a spatially constant plane wave if the time step-size is restricted by a Courant–Friedrichs–Lewy condition (CFL condition). The proof first uses a Hamiltonian reduction and transformation and then modulated Fourier expansions in time. It provides detailed insight into the structure of the numerical solution.
            
            
            
          
        
      @article{10_1017_fms_2014_4,
     author = {ERWAN FAOU and LUDWIG GAUCKLER and CHRISTIAN LUBICH},
     title = {PLANE {WAVE} {STABILITY} {OF} {THE} {SPLIT-STEP} {FOURIER} {METHOD} {FOR} {THE} {NONLINEAR} {SCHR\"ODINGER} {EQUATION}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.4/}
}
                      
                      
                    TY - JOUR AU - ERWAN FAOU AU - LUDWIG GAUCKLER AU - CHRISTIAN LUBICH TI - PLANE WAVE STABILITY OF THE SPLIT-STEP FOURIER METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION JO - Forum of Mathematics, Sigma PY - 2014 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.4/ DO - 10.1017/fms.2014.4 LA - en ID - 10_1017_fms_2014_4 ER -
%0 Journal Article %A ERWAN FAOU %A LUDWIG GAUCKLER %A CHRISTIAN LUBICH %T PLANE WAVE STABILITY OF THE SPLIT-STEP FOURIER METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION %J Forum of Mathematics, Sigma %D 2014 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.4/ %R 10.1017/fms.2014.4 %G en %F 10_1017_fms_2014_4
ERWAN FAOU; LUDWIG GAUCKLER; CHRISTIAN LUBICH. PLANE WAVE STABILITY OF THE SPLIT-STEP FOURIER METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.4
Cité par Sources :