AN $L$ -FUNCTION-FREE PROOF OF VINOGRADOV’S THREE PRIMES THEOREM
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We give a new proof of Vinogradov’s three primes theorem, which asserts that all sufficiently large odd positive integers can be written as the sum of three primes. Existing proofs rely on the theory of $L$ -functions, either explicitly or implicitly. Our proof is sieve theoretical and uses a transference principle, the idea of which was first developed by Green [Ann. of Math. (2) 161 (3) (2005), 1609–1636] and used in the proof of Green and Tao’s theorem [Ann. of Math. (2) 167 (2) (2008), 481–547]. To make our argument work, we also develop an additive combinatorial result concerning popular sums, which may be of independent interest.
@article{10_1017_fms_2014_27,
     author = {XUANCHENG SHAO},
     title = {AN $L$ {-FUNCTION-FREE} {PROOF} {OF} {VINOGRADOV{\textquoteright}S} {THREE} {PRIMES} {THEOREM}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.27/}
}
TY  - JOUR
AU  - XUANCHENG SHAO
TI  - AN $L$ -FUNCTION-FREE PROOF OF VINOGRADOV’S THREE PRIMES THEOREM
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.27/
DO  - 10.1017/fms.2014.27
LA  - en
ID  - 10_1017_fms_2014_27
ER  - 
%0 Journal Article
%A XUANCHENG SHAO
%T AN $L$ -FUNCTION-FREE PROOF OF VINOGRADOV’S THREE PRIMES THEOREM
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.27/
%R 10.1017/fms.2014.27
%G en
%F 10_1017_fms_2014_27
XUANCHENG SHAO. AN $L$ -FUNCTION-FREE PROOF OF VINOGRADOV’S THREE PRIMES THEOREM. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.27

Cité par Sources :