CANONICAL REPRESENTATIVES FOR DIVISOR CLASSES ON TROPICAL CURVES AND THE MATRIX–TREE THEOREM
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\Gamma $ be a compact tropical curve (or metric graph) of genus $g$ . Using the theory of tropical theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative (called a break divisor) for each linear equivalence class of divisors of degree $g$ on $\Gamma $ . We present a new combinatorial proof of the fact that there is a unique break divisor in each equivalence class, establishing in the process an ‘integral’ version of this result which is of independent interest. As an application, we provide a‘geometric proof’ of (a dual version of) Kirchhoff’s celebrated matrix–tree theorem. Indeed, we show that each weighted graph model $G$ for $\Gamma $ gives rise to a canonical polyhedral decomposition of the $g$ -dimensional real torus $\mathrm{Pic}^g(\Gamma )$ into parallelotopes $C_T$ , one for each spanning tree $T$ of $G$ , and the dual Kirchhoff theorem becomes the statement that the volume of $\mathrm{Pic}^g(\Gamma )$ is the sum of the volumes of the cells in the decomposition.
            
            
            
          
        
      @article{10_1017_fms_2014_25,
     author = {YANG AN and MATTHEW BAKER and GREG KUPERBERG and FARBOD SHOKRIEH},
     title = {CANONICAL {REPRESENTATIVES} {FOR} {DIVISOR} {CLASSES} {ON} {TROPICAL} {CURVES} {AND} {THE} {MATRIX{\textendash}TREE} {THEOREM}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.25/}
}
                      
                      
                    TY - JOUR AU - YANG AN AU - MATTHEW BAKER AU - GREG KUPERBERG AU - FARBOD SHOKRIEH TI - CANONICAL REPRESENTATIVES FOR DIVISOR CLASSES ON TROPICAL CURVES AND THE MATRIX–TREE THEOREM JO - Forum of Mathematics, Sigma PY - 2014 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.25/ DO - 10.1017/fms.2014.25 LA - en ID - 10_1017_fms_2014_25 ER -
%0 Journal Article %A YANG AN %A MATTHEW BAKER %A GREG KUPERBERG %A FARBOD SHOKRIEH %T CANONICAL REPRESENTATIVES FOR DIVISOR CLASSES ON TROPICAL CURVES AND THE MATRIX–TREE THEOREM %J Forum of Mathematics, Sigma %D 2014 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.25/ %R 10.1017/fms.2014.25 %G en %F 10_1017_fms_2014_25
YANG AN; MATTHEW BAKER; GREG KUPERBERG; FARBOD SHOKRIEH. CANONICAL REPRESENTATIVES FOR DIVISOR CLASSES ON TROPICAL CURVES AND THE MATRIX–TREE THEOREM. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.25
Cité par Sources :