EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS
Forum of Mathematics, Sigma, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $p(k)$ denote the partition function of $k$. For each $k\geqslant 2$, we describe a list of $p(k)-1$ quasirandom properties that a $k$-uniform hypergraph can have. Our work connects previous notions on linear hypergraph quasirandomness by Kohayakawa, Rödl, and Skokan, and by Conlon, Hàn, Person, and Schacht, and the spectral approach of Friedman and Wigderson. For each of the quasirandom properties that is described, we define the largest and the second largest eigenvalues. We show that a hypergraph satisfies these quasirandom properties if and only if it has a large spectral gap. This answers a question of Conlon, Hàn, Person, and Schacht. Our work can be viewed as a partial extension to hypergraphs of the seminal spectral results of Chung, Graham, and Wilson for graphs.
@article{10_1017_fms_2014_22,
     author = {JOHN LENZ and DHRUV MUBAYI},
     title = {EIGENVALUES {AND} {LINEAR} {QUASIRANDOM} {HYPERGRAPHS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2014.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.22/}
}
TY  - JOUR
AU  - JOHN LENZ
AU  - DHRUV MUBAYI
TI  - EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS
JO  - Forum of Mathematics, Sigma
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.22/
DO  - 10.1017/fms.2014.22
LA  - en
ID  - 10_1017_fms_2014_22
ER  - 
%0 Journal Article
%A JOHN LENZ
%A DHRUV MUBAYI
%T EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS
%J Forum of Mathematics, Sigma
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.22/
%R 10.1017/fms.2014.22
%G en
%F 10_1017_fms_2014_22
JOHN LENZ; DHRUV MUBAYI. EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2014.22

Cité par Sources :