Linear difference equations, frieze patterns, and the combinatorial Gale transform
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of a combinatorial Gale transform, which is a duality between periodic difference equations of different orders. We describe periodic rational maps generalizing the classical Gauss map.
@article{10_1017_fms_2014_20,
     author = {SOPHIE MORIER-GENOUD and VALENTIN OVSIENKO and RICHARD EVAN SCHWARTZ and SERGE TABACHNIKOV},
     title = {Linear difference equations, frieze patterns, and the combinatorial {Gale} transform},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.20/}
}
TY  - JOUR
AU  - SOPHIE MORIER-GENOUD
AU  - VALENTIN OVSIENKO
AU  - RICHARD EVAN SCHWARTZ
AU  - SERGE TABACHNIKOV
TI  - Linear difference equations, frieze patterns, and the combinatorial Gale transform
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.20/
DO  - 10.1017/fms.2014.20
LA  - en
ID  - 10_1017_fms_2014_20
ER  - 
%0 Journal Article
%A SOPHIE MORIER-GENOUD
%A VALENTIN OVSIENKO
%A RICHARD EVAN SCHWARTZ
%A SERGE TABACHNIKOV
%T Linear difference equations, frieze patterns, and the combinatorial Gale transform
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.20/
%R 10.1017/fms.2014.20
%G en
%F 10_1017_fms_2014_20
SOPHIE MORIER-GENOUD; VALENTIN OVSIENKO; RICHARD EVAN SCHWARTZ; SERGE TABACHNIKOV. Linear difference equations, frieze patterns, and the combinatorial Gale transform. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.20

Cité par Sources :