GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as for initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives.
@article{10_1017_fms_2014_19,
     author = {MARTINS BRUVERIS and PETER W. MICHOR and DAVID MUMFORD},
     title = {GEODESIC {COMPLETENESS} {FOR} {SOBOLEV} {METRICS} {ON} {THE} {SPACE} {OF} {IMMERSED} {PLANE} {CURVES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.19/}
}
TY  - JOUR
AU  - MARTINS BRUVERIS
AU  - PETER W. MICHOR
AU  - DAVID MUMFORD
TI  - GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.19/
DO  - 10.1017/fms.2014.19
LA  - en
ID  - 10_1017_fms_2014_19
ER  - 
%0 Journal Article
%A MARTINS BRUVERIS
%A PETER W. MICHOR
%A DAVID MUMFORD
%T GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.19/
%R 10.1017/fms.2014.19
%G en
%F 10_1017_fms_2014_19
MARTINS BRUVERIS; PETER W. MICHOR; DAVID MUMFORD. GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.19

Cité par Sources :