CHOW GROUPS, CHOW COHOMOLOGY, AND LINEAR VARIETIES
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We compute the Chow groups and the Fulton–MacPherson operational Chow cohomology ring for a class of singular rational varieties including toric varieties. The computation is closely related to the weight filtration on the ordinary cohomology of these varieties. We use the computation to answer one of the open problems about operational Chow cohomology: it does not have a natural map to ordinary cohomology.
@article{10_1017_fms_2014_15,
     author = {BURT TOTARO},
     title = {CHOW {GROUPS,} {CHOW} {COHOMOLOGY,} {AND} {LINEAR} {VARIETIES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.15/}
}
TY  - JOUR
AU  - BURT TOTARO
TI  - CHOW GROUPS, CHOW COHOMOLOGY, AND LINEAR VARIETIES
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.15/
DO  - 10.1017/fms.2014.15
LA  - en
ID  - 10_1017_fms_2014_15
ER  - 
%0 Journal Article
%A BURT TOTARO
%T CHOW GROUPS, CHOW COHOMOLOGY, AND LINEAR VARIETIES
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.15/
%R 10.1017/fms.2014.15
%G en
%F 10_1017_fms_2014_15
BURT TOTARO. CHOW GROUPS, CHOW COHOMOLOGY, AND LINEAR VARIETIES. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.15

Cité par Sources :