Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ . We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$ -adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).
@article{10_1017_fms_2014_12,
     author = {PAYMAN L. KASSAEI and SHU SASAKI and YICHAO TIAN},
     title = {Modularity lifting results in parallel weight one and applications to the {Artin} conjecture: the tamely ramified case},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/}
}
TY  - JOUR
AU  - PAYMAN L. KASSAEI
AU  - SHU SASAKI
AU  - YICHAO TIAN
TI  - Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/
DO  - 10.1017/fms.2014.12
LA  - en
ID  - 10_1017_fms_2014_12
ER  - 
%0 Journal Article
%A PAYMAN L. KASSAEI
%A SHU SASAKI
%A YICHAO TIAN
%T Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/
%R 10.1017/fms.2014.12
%G en
%F 10_1017_fms_2014_12
PAYMAN L. KASSAEI; SHU SASAKI; YICHAO TIAN. Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.12

Cité par Sources :