Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ . We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$ -adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).
            
            
            
          
        
      @article{10_1017_fms_2014_12,
     author = {PAYMAN L. KASSAEI and SHU SASAKI and YICHAO TIAN},
     title = {Modularity lifting results in parallel weight one and applications to the {Artin} conjecture: the tamely ramified case},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/}
}
                      
                      
                    TY - JOUR AU - PAYMAN L. KASSAEI AU - SHU SASAKI AU - YICHAO TIAN TI - Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case JO - Forum of Mathematics, Sigma PY - 2014 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/ DO - 10.1017/fms.2014.12 LA - en ID - 10_1017_fms_2014_12 ER -
%0 Journal Article %A PAYMAN L. KASSAEI %A SHU SASAKI %A YICHAO TIAN %T Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case %J Forum of Mathematics, Sigma %D 2014 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.12/ %R 10.1017/fms.2014.12 %G en %F 10_1017_fms_2014_12
PAYMAN L. KASSAEI; SHU SASAKI; YICHAO TIAN. Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.12
Cité par Sources :