SUR LES COMPOSANTES CONNEXES D’UNE FAMILLE D’ESPACES ANALYTIQUES ${P}$ -ADIQUES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 2 (2014)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              On the connected components of a family of $\boldsymbol {p}$ -adic analytic spaces. Let $X=\mathcal{M}(\mathscr{A})$ be an affinoid space and let $f,g\in \mathscr{A}$ . We study the sets of connected components of the spaces defined by an inequality of the form $|f|\le r\,|g|$ , with $r\ge 0$ . We prove that there exists a finite partition of $\mathbf{R}_{+}$ into intervals where those sets are canonically in bijection and that the bounds of those intervals belong to $\sqrt{\rho (\mathscr{A})}$ .
            
            
            
          
        
      @article{10_1017_fms_2014_11,
     author = {J\'ER\^OME POINEAU},
     title = {SUR {LES} {COMPOSANTES} {CONNEXES} {D{\textquoteright}UNE} {FAMILLE} {D{\textquoteright}ESPACES} {ANALYTIQUES} ${P}$ {-ADIQUES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.11/}
}
                      
                      
                    TY  - JOUR
AU  - JÉRÔME POINEAU
TI  - SUR LES COMPOSANTES CONNEXES D’UNE FAMILLE D’ESPACES ANALYTIQUES ${P}$ -ADIQUES
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.11/
DO  - 10.1017/fms.2014.11
LA  - en
ID  - 10_1017_fms_2014_11
ER  - 
                      
                      
                    JÉRÔME POINEAU. SUR LES COMPOSANTES CONNEXES D’UNE FAMILLE D’ESPACES ANALYTIQUES ${P}$ -ADIQUES. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.11
                  
                Cité par Sources :