A NONSEPARABLE AMENABLE OPERATOR ALGEBRA WHICH IS NOT ISOMORPHIC TO A $C^*$ -ALGEBRA
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

It has been a long-standing question whether every amenable operator algebra is isomorphic to a (necessarily nuclear) $\mathrm{C}^*$ -algebra. In this note, we give a nonseparable counterexample. Finding out whether a separable counterexample exists remains an open problem. We also initiate a general study of unitarizability of representations of amenable groups in $\mathrm{C}^*$ -algebras and show that our method cannot produce a separable counterexample.
@article{10_1017_fms_2013_6,
     author = {YEMON CHOI and ILIJAS FARAH and NARUTAKA OZAWA},
     title = {A {NONSEPARABLE} {AMENABLE} {OPERATOR} {ALGEBRA} {WHICH} {IS} {NOT} {ISOMORPHIC} {TO} {A} $C^*$ {-ALGEBRA}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2013.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2013.6/}
}
TY  - JOUR
AU  - YEMON CHOI
AU  - ILIJAS FARAH
AU  - NARUTAKA OZAWA
TI  - A NONSEPARABLE AMENABLE OPERATOR ALGEBRA WHICH IS NOT ISOMORPHIC TO A $C^*$ -ALGEBRA
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2013.6/
DO  - 10.1017/fms.2013.6
LA  - en
ID  - 10_1017_fms_2013_6
ER  - 
%0 Journal Article
%A YEMON CHOI
%A ILIJAS FARAH
%A NARUTAKA OZAWA
%T A NONSEPARABLE AMENABLE OPERATOR ALGEBRA WHICH IS NOT ISOMORPHIC TO A $C^*$ -ALGEBRA
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2013.6/
%R 10.1017/fms.2013.6
%G en
%F 10_1017_fms_2013_6
YEMON CHOI; ILIJAS FARAH; NARUTAKA OZAWA. A NONSEPARABLE AMENABLE OPERATOR ALGEBRA WHICH IS NOT ISOMORPHIC TO A $C^*$ -ALGEBRA. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2013.6

Cité par Sources :