Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_7,
author = {Peter B\"urgisser and Felipe Cucker and Pierre Lairez},
title = {Rigid continuation paths {II.} structured polynomial systems},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fmp.2023.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.7/}
}
TY - JOUR AU - Peter Bürgisser AU - Felipe Cucker AU - Pierre Lairez TI - Rigid continuation paths II. structured polynomial systems JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.7/ DO - 10.1017/fmp.2023.7 LA - en ID - 10_1017_fmp_2023_7 ER -
Peter Bürgisser; Felipe Cucker; Pierre Lairez. Rigid continuation paths II. structured polynomial systems. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.7
[1] , , , and , ‘Condition length and complexity for the solution of polynomial systems’, Found. Comput. Math. 16(6) (2016), 1401–1422.Google Scholar | DOI | DOI
[2] and , ‘The complexity of partial derivatives’, Theor. Comput. Sci. 22(3) (1983), 317–330.Google Scholar | DOI
[3] , ‘A continuation method to solve polynomial systems and its complexity’, Numer. Math. 117(1) (2011), 89–113.Google Scholar | DOI | DOI
[4] and , ‘Certified numerical homotopy tracking’, Exp. Math. 21(1) (2012), 69–83.Google Scholar | DOI
[5] and , ‘Robust certified numerical homotopy tracking’, Found. Comput. Math. 13(2) (2013), 253–295.Google Scholar | DOI | DOI
[6] and , ‘On Smale’s 17th problem: A probabilistic positive solution’, Found. Comput. Math. 8(1) (2008), 1–43.Google Scholar | DOI | DOI
[7] and , ‘Smale’s 17th problem: Average polynomial time to compute affine and projective solutions’, J. Am. Math. Soc. 22(2) (2009), 363–385.Google Scholar | DOI
[8] and , ‘Fast linear homotopy to find approximate zeros of polynomial systems’, Found. Comput. Math. 11(1) (2011), 95–129.Google Scholar | DOI | DOI
[9] and (2009). ‘Complexity of Bezout’s theorem. VII. Distance estimates in the condition metric’, Found. Comput. Math., 9(2), 179–195.Google Scholar | DOI | DOI
[10] , and , Concentration Inequalities: A Nonasymptotic Theory of Independence (Oxford University Press, Oxford, 2013).Google Scholar | DOI | DOI
[11] , Completeness and reduction in algebraic complexity theory, (Springer, 2000).Google Scholar | DOI
[12] , Condition of intersecting a projective variety with a varying linear subspace’, SIAM J. Appl. Algebra Geom. 1(1) (2017), 111–125.Google Scholar | DOI
[13] , and , Algebraic Complexity Theory, vol. 315 (Springer, New York, 1997).Google Scholar | DOI
[14] and , ‘On a problem posed by Steve Smale’, Ann. of Math. (2) 174(3) (2011), 1785–1836.Google Scholar | DOI | DOI
[15] and , Condition: The Geometry of Numerical Algorithms (Springer, New York, 2013). 10/dsfq.Google Scholar | DOI
[16] , Points fixes, zéros et la méthode de Newton, vol. 54 (Springer, New York, 2006).Google Scholar | DOI
[17] and , ‘Multihomogeneous Newton methods’, Math. Comput. 69(231) (1999), 1071–1099.Google Scholar | DOI
[18] , On condition numbers and the distance to the nearest ill-posed problem’, Numer. Math. 51(3) (1987), 251–289.Google Scholar | DOI
[19] , ‘Curvature measures. Trans. Am. Math. Soc. 93(3) (1959), 418–491.Google Scholar | DOI
[20] , , , , and , Bayesian Data Analysis, 3rd ed. (CRC Press, Boca Raton, 2014).Google Scholar
[21] , and , A Gröbner free alternative for polynomial system solving’, J. Complex. 17(1) (2001), 154–211.Google Scholar | DOI | DOI
[22] and , Principles of Algebraic Geometry (Wiley-Interscience, New York, 1978).Google Scholar
[23] and , ‘Certified predictor-corrector tracking for Newton homotopies’, J. Symb. Comput. 74 (2016), 239–254.Google Scholar | DOI | DOI
[24] and , ‘Algorithm 921: alphaCertified: certifying solutions to polynomial systems’, ACM Trans. Math. Softw. 38(4) (2012), 1–20.Google Scholar | DOI
[25] , ‘The kinematic formula in Riemannian homogeneous spaces’, Mem. Amer. Math. Soc. 106(509) (1993).Google Scholar | DOI
[26] , and , ‘A global Lojasiewicz inequality for algebraic varieties’, Trans. Am. Math. Soc. 329(2) (1992), 813.Google Scholar | DOI
[27] , Accurate eigenvalues of a symmetric tri-diagonal matrix (CS41) (Stanford University, Stanford, 1966).Google Scholar
[28] , ‘A deterministic algorithm to compute approximate roots of polynomial systems in polynomial average time’, Found. Comput. Math. 17(5) (2017), 1265–1292.Google Scholar | DOI | DOI
[29] , ‘Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems’, J. Am. Math. Soc., 33(2) (2020), 487–526.Google Scholar | DOI | DOI
[30] , ‘A single exponential bound on the complexity of computing Gröbner bases of zero dimensional ideals’, in Effective Methods in Algebraic Geometry (Birkhäuser, Boston, 1991), 227–234.Google Scholar | DOI
[31] and , ‘Characterizing Valiant’s algebraic complexity classes’, J. Complex. 24(1) (2008), 16–38.Google Scholar | DOI | DOI
[32] , ‘Lower bounds for non-commutative computation’, Proc. Twenty-Third Annu. ACM Symp. Theory Comput. (1991), 410–418.Google Scholar | DOI
[33] , ‘Univariate polynomials: Nearly optimal algorithms for factorization and rootfinding’, Proc. 2001 Int. Symp. Symb. Algebr. Comput. (2001), 253–267.Google Scholar | DOI
[34] , ‘Optimal and nearly optimal algorithms for approximating polynomial zeros’, Comput. Math. Appl. 31(2) (1996), 97–138.Google Scholar | DOI
[35] , ‘On the worst-case arithmetic complexity of approximating zeros of polynomials’, J. Complex. 3(2) (1987), 90–113.Google Scholar | DOI
[36] , ‘On the worst-case arithmetic complexity of approximating zeros of systems of polynomials’, SIAM J. Comput. 18(2) (1989), 350–370.Google Scholar | DOI
[37] , Function Theory in the Unit Ball of (Springer, New York, 1980).Google Scholar
[38] and , ‘Verified error bounds for multiple roots of systems of nonlinear equations’, Numer. Algorith. 54(3) (2010), 359–377.Google Scholar | DOI | DOI
[39] ‘Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric’, Found. Comput. Math., 9(2) (2009), 171–178.Google Scholar | DOI | DOI
[40] and , ‘Complexity of Bézout’s theorem. I. Geometric aspects’, J. Am. Math. Soc. 6(2) (1993), 459–501.Google Scholar | DOI
[41] and , ‘Complexity of Bezout’s theorem II volumes and probabilities’, in Computational Algebraic Geometry (Birkhäuser, Boston, 1993), 267–285.Google Scholar | DOI
[42] and , Complexity of Bezout’s theorem. III. Condition number and packing’, J. Complex. 9(1) (1993), 4–14.Google Scholar | DOI | DOI
[43] and , ‘Complexity of Bezout’s theorem. V. Polynomial time’, Theor. Comput. Sci. 133(1) (1994), 141–164. Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993)Google Scholar | DOI
[44] and , ‘Complexity of Bezout’s theorem. IV. Probability of success; extensions’, SIAM J. Numer. Anal. 33(1) (1996), 128–148.Google Scholar | DOI
[45] , ‘Newton’s method estimates from data at one point’, in The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo., 1985) (Springer, New York, 1986), 185–196.Google Scholar | DOI
[46] , ‘Complexity theory and numerical analysis’, Acta Numer. 6 (1997), 523–551.Google Scholar | DOI
[47] , ‘Mathematical problems for the next century’, Math. Intell. 20(2) (1998), 7–15.Google Scholar | DOI
[48] , and , ‘A robust numerical path tracking algorithm for polynomial homotopy continuation’, SIAM J. Sci. Comput. 42(6) (2020), A3610–A3637.Google Scholar | DOI
[49] , ‘Mixed precision path tracking for polynomial homotopy continuation’, Adv. Comput. Math. 47(5) (2021), 75.Google Scholar | DOI | DOI
[50] , ‘Classes of arithmetic circuits capturing the complexity of computing the determinant’, IEICE Trans. Inf. Syst. E75-D(1) (1992), 116–124.Google Scholar
[51] , ‘Completeness classes in algebra’, Proc. Elev. Annu. ACM Symp. Theory Comput. (1979), 249–261.Google Scholar | DOI
[52] , ‘Reducibility by algebraic projections’, in Logic and algorithmic (Zurich, 1980) (Univ. Genève, Genève, 1982), 365–380.Google Scholar
Cité par Sources :