The existence of the Kähler–Ricci soliton degeneration
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .
@article{10_1017_fmp_2023_5,
     author = {Harold Blum and Yuchen Liu and Chenyang Xu and Ziquan Zhuang},
     title = {The existence of the {K\"ahler{\textendash}Ricci} soliton degeneration},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.5/}
}
TY  - JOUR
AU  - Harold Blum
AU  - Yuchen Liu
AU  - Chenyang Xu
AU  - Ziquan Zhuang
TI  - The existence of the Kähler–Ricci soliton degeneration
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.5/
DO  - 10.1017/fmp.2023.5
LA  - en
ID  - 10_1017_fmp_2023_5
ER  - 
%0 Journal Article
%A Harold Blum
%A Yuchen Liu
%A Chenyang Xu
%A Ziquan Zhuang
%T The existence of the Kähler–Ricci soliton degeneration
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.5/
%R 10.1017/fmp.2023.5
%G en
%F 10_1017_fmp_2023_5
Harold Blum; Yuchen Liu; Chenyang Xu; Ziquan Zhuang. The existence of the Kähler–Ricci soliton degeneration. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.5

[AZ22] Abban, H. and Zhuang, Z., ‘ K-stability of Fano varieties via admissible flags’, Forum Math. Pi. 10 (2022), Paper No. e15.Google Scholar | DOI

[Bam18] Bamler, R., ‘Convergence of Ricci flows with bounded scalar curvature’, Ann. of Math. (2) 188(3) (2018), 753–831.Google Scholar | DOI

[Ber16] Berman, R. J., ‘K-polystability of -Fano varieties admitting Kähler–Einstein metrics’, Invent. Math. (3) (2016), 973–1025.Google Scholar | DOI

[BWN14] Berman, R. J. and Nyström, D. W., ‘Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons’, Preprint, 2014, .Google Scholar | arXiv

[Ber15] Berndtsson, B., ‘A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry’, Invent. Math. 200(1) (2015), 149–200.Google Scholar | DOI

[BCHM10] Birkar, C., Cascini, P., Hacon, C. D. and Mckernan, J., ‘Existence of minimal models for varieties of log general type’, J. Amer. Math. Soc. 23(2) (2010), 405–468.Google Scholar | DOI

[BC11] Boucksom, S. and Chen, H., ‘Okounkov bodies of filtered linear series’, Compos. Math. 147(4) (2011), 1205–1229.Google Scholar | DOI

[BE21] Boucksom, S. and Eriksson, D., ‘Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry’, Adv. Math. 378 (2021), 107501, 124.Google Scholar | DOI

[BHJ17] Boucksom, S., Hisamoto, T. and Jonsson, M., ‘Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs’, Ann. Inst. Fourier (Grenoble) 67(2) (2017), 743–841.Google Scholar | DOI

[BJ21] Boucksom, S. and Jonsson, M., ‘A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations’, Preprint, 2021, .Google Scholar | arXiv

[BJ20] Blum, H. and Jonsson, M., ‘Thresholds, valuations, and K-stability’, Adv. Math. 365(2020), 107062, 57.Google Scholar | DOI

[BL22] Blum, H. and Liu, Y., ‘Openness of uniform K-stability in families of -Fano varieties’, Ann. Sci. Éc. Norm. Supér. (4) 55(1) (2022), 1–41.Google Scholar | DOI

[BLX22] Blum, H., Liu, Y. and Xu, C., ‘Openness of K-semistability for Fano varieties’, Duke Math. J. 171 (13) (2022), 2753–2797.Google Scholar

[CM15] Chen, H. and Maclean, C., ‘Distribution of logarithmic spectra of the equilibrium energy’, Manuscripta Math. 146(3–4) (2015), 365–394.Google Scholar | DOI

[Che20] Chen, W., ‘Boundedness of weak Fano pairs with alpha-invariants and volumes bounded below’, Publ. Res. Inst. Math. Sci. 56(3) (2020), 539–559 Google Scholar | DOI

[CSW18] Chen, X., Sun, S. and Wang, B., ‘Kähler–Ricci flow, Kähler–Einstein metric, and K-stability’, Geom. Topol. 22(6) (2018), 3145–3173.Google Scholar | DOI

[CW20] Chen, X. and Wang, B., ‘Space of Ricci flows (II)—Part B: Weak compactness of the flows’, J. Differential Geom. 116(1) (2020), 1–123.Google Scholar | DOI

[DS16] Datar, V. and Székelyhidi, G., ‘Kähler–Einstein metrics along the smooth continuity method’, Geom. Funct. Anal. 26(4) (2016), 975–1010.Google Scholar

[DS20] Dervan, R. and Székelyhidi, G., ‘The Kähler–Ricci flow and optimal degenerations’, J. Differential Geom. 116(1) (2020), 187–203.Google Scholar

[ELMNP] Ein, L., Lazarsfeld, R., Mustaţă, M., Nakamaye, M. and Popa, M., ‘Restricted volumes and base loci of linear series’, Amer. J. Math. 131(3) (2009), 607–651.Google Scholar

[Fuj19] Fujita, K., ‘A valuative criterion for uniform K-stability of -Fano varieties’, J. Reine Angew. Math. 751 (2019), 309–338.Google Scholar | DOI

[Fuj19b] Fujita, K., ‘K-stability of Fano manifolds with not small alpha invariants’, J. Inst. Math. Jussieu 18(3( (2019), 519–530.Google Scholar | DOI

[He16] He, W., ‘Kähler–Ricci soliton and -functional’, Asian J. Math. 20(4) (2016), 645–663.Google Scholar | DOI

[HL20] Han, J. and Li, C., ‘On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations’, Preprint, 2020, , To appear in Comm. Pure Appl. Math.Google Scholar | arXiv

[HL20b] Han, J. and Li, C., ‘Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties’, Preprint, 2020, . To appear in Geom. Topol.Google Scholar | arXiv

[HMX13] Hacon, C. D., Mckernan, J. and Xu, C., ‘On the birational automorphisms of varieties of general type’, Ann. of Math. (2) 177(3) (2013), 1077–1111.Google Scholar | DOI

[Hor03] Hörmander, L., The Analysis of Linear Partial Differential Operators. Distribution theory and Fourier analysis. Reprint of the second (1990) edition (Springer, Berlin; MR1065993). Classics in Mathematics. Springer-Verlag, Berlin, 2003. x+440 pp.Google Scholar

[Jia20] Jiang, C., ‘Boundedness of -Fano varieties with degrees and alpha-invariants bounded from below’, Ann. Sci. Éc. Norm. Supér. (4) 53(5) (2020), 1235–1248.Google Scholar

[JM12] Jonsson, M. and Mustaţă, M., ‘Valuations and asymptotic invariants for sequences of ideals’, Ann. Inst. Fourier (Grenoble) 62(6) (2012), 2145–2209.Google Scholar

[KK12] Kaveh, K. and Khovanskii, A. G., ‘Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory’, Ann. of Math. (2) 176(2) (2012), 925–978.Google Scholar

[Kol13] Kollár, J., Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013). With a collaboration of Sándor Kovács.Google Scholar | DOI

[KM98] Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998). With the collaboration of C. H. Clemens and A. Corti; Ttranslated from the 1998 Japanese original.Google Scholar

[Laz04] Lazarsfeld, Robert, Positivity in Algebraic Geometry . II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 49, Springer-Verlag, Berlin, 2004.Google Scholar

[LM09] Lazarsfeld, R. and Mustaţă, M., ‘Convex bodies associated to linear series’, Ann. Sci. Éc. Norm. Supér. (4) 42(5) (2009), 783–835.Google Scholar | DOI

[Li17] Li, C., ‘ K-semistability is equivariant volume minimization’, Duke Math. J. 166(16) (2017), 3147–3218.Google Scholar | DOI

[Li22] Li, C., ‘ -uniform stability and Kähler–Einstein metrics on Fano varieties’, Invent. Math. 227(2) (2022), 661–744.Google Scholar | DOI

[LLX20] Li, C., Liu, Y. and Xu, C., A Guided Tour to Normalized Volume, Geometric Analysis, in Honor of Gang Tian’s 60th Birthday, Progr. Math., vol. 333 (Birkhäuser/Springer, Cham, 2020), 167–219.Google Scholar

[LWX21] Li, C., Wang, X. and Xu, C., ‘Algebraicity of the metric tangent cones and equivariant K-stability’, J. Amer. Math. Soc. 34 (4) (2021), 1175–1214.Google Scholar | DOI

[LX14] Li, C. and Xu, C., ‘Special test configuration and K-stability of Fano varieties’, Ann. of Math. (2) 180(1) (2014), 197–232.Google Scholar

[LXZ22] Liu, Y., Xu, C. and Zhuang, Z., ‘Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196(2) (2022), 507–566.Google Scholar | DOI

[Reb21] Reboulet, R., ‘The space of finite-energy metrics over a degeneration of complex manifolds’, Preprint, 2021, .Google Scholar | arXiv

[Reb22] Reboulet, R., ‘Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy’, J. Reine Angew. Math. 793 (2022), 59–103.Google Scholar | DOI

[RTZ21] Rubinstein, Y. A., Tian, G. and Zhang, K., ‘Basis divisors and balanced metrics’, J. Reine Angew. Math. 778 (2021), 171–218.Google Scholar | DOI

[Tia97] Tian, G., ‘Kähler–Einstein metrics with positive scalar curvature’, Invent. Math. 130(1) (1997), 1–37.Google Scholar | DOI

[TZZZ13] Tian, G., Zhang, S., Zhang, Z. and Zhu, X., ‘Perelman’s entropy and Kähler–Ricci flow on a Fano manifold’, Trans. Amer. Math. Soc. 365(12) (2013), 6669–6695.Google Scholar

[TZ16] Tian, G. and Zhang, Z., ‘Regularity of Kähler–Ricci flows on Fano manifolds’, Acta Math. 216(1) (2016), 127–176.Google Scholar | DOI

[WZ04] Wang, X.-J. and Zhu, X., ‘Kähler–Ricci solitons on toric manifolds with positive first Chern class’, Adv. Math. 188(1) (2004), 87–103.Google Scholar | DOI

[Xu20] Xu, C., ‘A minimizing valuation is quasi-monomial’, Ann. of Math. (2) 191(3) (2020), 1003–1030.Google Scholar | DOI

[Xu21] Xu, C., ‘Towards finite generation of higher rational rank valuations’, Mat. Sb. 212(3) (2021), 157–174 (Russian).Google Scholar

[XZ20] Xu, C. and Zhuang, Z., ‘On positivity of the CM line bundle on K-moduli spaces’, Ann. of Math. (2) 192(3) (2020), 1005–1068.Google Scholar | DOI

[XZ21] Xu, C. and Zhuang, Z., ‘Uniqueness of the minimizer of the normalized volume function’, Camb. J. Math. 9(1) (2021), 149–176.Google Scholar | DOI

Cité par Sources :