A Shuffle Theorem for Paths Under Any Line
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $\operatorname {\mathrm {GL}}_{l}$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.
@article{10_1017_fmp_2023_4,
     author = {Jonah Blasiak and Mark Haiman and Jennifer Morse and Anna Pun and George H. Seelinger},
     title = {A {Shuffle} {Theorem} for {Paths} {Under} {Any} {Line}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/}
}
TY  - JOUR
AU  - Jonah Blasiak
AU  - Mark Haiman
AU  - Jennifer Morse
AU  - Anna Pun
AU  - George H. Seelinger
TI  - A Shuffle Theorem for Paths Under Any Line
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/
DO  - 10.1017/fmp.2023.4
LA  - en
ID  - 10_1017_fmp_2023_4
ER  - 
%0 Journal Article
%A Jonah Blasiak
%A Mark Haiman
%A Jennifer Morse
%A Anna Pun
%A George H. Seelinger
%T A Shuffle Theorem for Paths Under Any Line
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/
%R 10.1017/fmp.2023.4
%G en
%F 10_1017_fmp_2023_4
Jonah Blasiak; Mark Haiman; Jennifer Morse; Anna Pun; George H. Seelinger. A Shuffle Theorem for Paths Under Any Line. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.4

[1] Alexandersson, P., ‘Non-symmetric Macdonald polynomials and Demazure–Lusztig operators’, Sém. Lothar. Combin. 76 (2016), Article B76d.Google Scholar

[2] Alexandersson, P. and Sawhney, M., ‘Properties of non-symmetric Macdonald polynomials at and ’, Ann. Comb. 23(2) (2019), 219–239.Google Scholar | DOI

[3] Bergeron, F., Garsia, A. M., Haiman, M. and Tesler, G., ‘Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions’, Methods Appl. Anal. 6(3) (1999), 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III.Google Scholar | DOI

[4] Bergeron, F., Garsia, A., Sergel Leven, E. and Xin, G., ‘Compositional -shuffle conjectures’, Int. Math. Res. Not. IMRN (14) (2016), 4229–4270.Google Scholar | DOI

[5] Blasiak, J., Haiman, M., Morse, J., Pun, A. and Seelinger, G. H., ‘A proof of the extended delta conjecture’, Forum of Mathematics, Pi. 11, E6.Google Scholar | DOI

[6] Burban, I. and Schiffmann, O., ‘On the Hall algebra of an elliptic curve, I’, Duke Math. J. 161(7) (2012), 1171–1231.Google Scholar | DOI

[7] Carlsson, E. and Mellit, A., ‘A proof of the shuffle conjecture’, J. Amer. Math. Soc. 31(3) (2018), 661–697.Google Scholar | DOI

[8] Feigin, B. L. and Tsymbaliuk, A. I., ‘Equivariant -theory of Hilbert schemes via shuffle algebra’, Kyoto J. Math. 51(4) (2011), 831–854.Google Scholar | DOI

[9] Fu, A. M. and Lascoux, A., ‘Non-symmetric Cauchy kernels for the classical groups’, J. Combin. Theory Ser. A 116(4) (2009), 903–917.Google Scholar | DOI

[10] Garsia, A. M. and Haiman, M., ‘A remarkable -Catalan sequence and -Lagrange inversion’, J. Algebraic Combin. 5(3) (1996), 191–244.Google Scholar | DOI

[11] Garsia, A. M. and Haiman, M., ‘Some natural bigraded -modules and -Kostka coefficients’, Electron. J. Combin. 3(2) (1996), Research Paper 24. The Foata Festschrift.Google Scholar | DOI

[12] Garsia, A. M., Haiman, M. and Tesler, G., ‘Explicit plethystic formulas for Macdonald -Kostka coefficients’, Sém. Lothar. Combin. 42 (1999), Art. B42m. The Andrews Festschrift (Maratea, 1998).Google Scholar

[13] Gorsky, E., Hawkes, G., Schilling, A. and Rainbolt, J., ‘Generalized -Catalan numbers’, Algebr. Comb. 3(4) (2020), 855–886.Google Scholar

[14] Grojnowski, I. and Haiman, M., ‘ Affine Hecke algebras and positivity of LLT and Macdonald polynomials’, Unpublished manuscript, 2007.Google Scholar

[15] Haglund, J., Haiman, M. and Loehr, N., ‘A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 18(3) (2005), 735–761.Google Scholar | DOI

[16] Haglund, J., Haiman, M., Loehr, N., Remmel, J. B. and Ulyanov, A., ‘A combinatorial formula for the character of the diagonal coinvariants’, Duke Math. J. 126(2) (2005), 195–232.Google Scholar | DOI

[17] Haglund, J., Morse, J. and Zabrocki, M., ‘A compositional shuffle conjecture specifying touch points of the Dyck path’, Canad. J. Math. 64(4) (2012), 822–844.Google Scholar | DOI

[18] Haiman, M., ‘Macdonald polynomials and geometry’, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., vol. 38 (Cambridge Univ. Press, Cambridge, 1999), pp. 207–254.Google Scholar

[19] Haiman, M., ‘Vanishing theorems and character formulas for the Hilbert scheme of points in the plane’, Invent. Math. 149 (2) (2002), 371–407.Google Scholar | DOI

[20] Haiman, M. D., ‘Conjectures on the quotient ring by diagonal invariants’, J. Algebraic Combin. 3(1) (1994), 17–76.Google Scholar | DOI

[21] Hikita, T., ‘Affine Springer fibers of type and combinatorics of diagonal coinvariants’, Adv. Math. 263 (2014), 88–122.Google Scholar | DOI

[22] Ion, B., ‘Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials’, J. Algebra 319(8) (2008), 3480–3517.Google Scholar | DOI

[23] Jing, N. H., ‘-hypergeometric series and Macdonald functions’, J. Algebraic Combin. 3(3) (1994), 291–305.Google Scholar | DOI

[24] Lascoux, A., Leclerc, B. and Thibon, J.-Y., ‘Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties’, J. Math. Phys. 38(2) (1997), 1041–1068.Google Scholar | DOI

[25] Lusztig, G., ‘Affine Hecke algebras and their graded version’, J. Amer. Math. Soc. 2(3) (1989), 599–635.Google Scholar | DOI

[26] Macdonald, I. G., Symmetric Functions and Hall Polynomials, second edn. (The Clarendon Press, Oxford University Press, New York, 1995). With contributions by A. Zelevinsky, Oxford Science Publications.Google Scholar

[27] Macdonald, I. G., ‘Affine Hecke Algebras and Orthogonal Polynomials’, Cambridge Tracts in Mathematics, vol. 157 (Cambridge University Press, Cambridge, 2003).Google Scholar | DOI

[28] Mellit, A., ‘Toric braids and -parking functions’, Duke Math. J. 170(18) (2021), 4123–4169.Google Scholar | DOI

[29] Mimachi, K. and Noumi, M., ‘A reproducing kernel for nonsymmetric Macdonald polynomials’, Duke Math. J. 91(3) (1998), 621–634.Google Scholar | DOI

[30] Negut, A., ‘The shuffle algebra revisited’, Int. Math. Res. Not. IMRN (22) (2014), 6242–6275.Google Scholar | DOI

[31] Schiffmann, O., ‘On the Hall algebra of an elliptic curve, II’, Duke Math. J. 161(9) (2012), 1711–1750.Google Scholar | DOI

[32] Schiffmann, O. and Vasserot, E., ‘The elliptic Hall algebra and the -theory of the Hilbert scheme of ’, Duke Math. J. 162(2) (2013), 279–366.Google Scholar | DOI

Cité par Sources :