Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_4,
author = {Jonah Blasiak and Mark Haiman and Jennifer Morse and Anna Pun and George H. Seelinger},
title = {A {Shuffle} {Theorem} for {Paths} {Under} {Any} {Line}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fmp.2023.4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/}
}
TY - JOUR AU - Jonah Blasiak AU - Mark Haiman AU - Jennifer Morse AU - Anna Pun AU - George H. Seelinger TI - A Shuffle Theorem for Paths Under Any Line JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/ DO - 10.1017/fmp.2023.4 LA - en ID - 10_1017_fmp_2023_4 ER -
%0 Journal Article %A Jonah Blasiak %A Mark Haiman %A Jennifer Morse %A Anna Pun %A George H. Seelinger %T A Shuffle Theorem for Paths Under Any Line %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.4/ %R 10.1017/fmp.2023.4 %G en %F 10_1017_fmp_2023_4
Jonah Blasiak; Mark Haiman; Jennifer Morse; Anna Pun; George H. Seelinger. A Shuffle Theorem for Paths Under Any Line. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.4
[1] , ‘Non-symmetric Macdonald polynomials and Demazure–Lusztig operators’, Sém. Lothar. Combin. 76 (2016), Article B76d.Google Scholar
[2] and , ‘Properties of non-symmetric Macdonald polynomials at and ’, Ann. Comb. 23(2) (2019), 219–239.Google Scholar | DOI
[3] , , and , ‘Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions’, Methods Appl. Anal. 6(3) (1999), 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III.Google Scholar | DOI
[4] , , and , ‘Compositional -shuffle conjectures’, Int. Math. Res. Not. IMRN (14) (2016), 4229–4270.Google Scholar | DOI
[5] , , , and , ‘A proof of the extended delta conjecture’, Forum of Mathematics, Pi. 11, E6.Google Scholar | DOI
[6] and , ‘On the Hall algebra of an elliptic curve, I’, Duke Math. J. 161(7) (2012), 1171–1231.Google Scholar | DOI
[7] and , ‘A proof of the shuffle conjecture’, J. Amer. Math. Soc. 31(3) (2018), 661–697.Google Scholar | DOI
[8] and , ‘Equivariant -theory of Hilbert schemes via shuffle algebra’, Kyoto J. Math. 51(4) (2011), 831–854.Google Scholar | DOI
[9] and , ‘Non-symmetric Cauchy kernels for the classical groups’, J. Combin. Theory Ser. A 116(4) (2009), 903–917.Google Scholar | DOI
[10] and , ‘A remarkable -Catalan sequence and -Lagrange inversion’, J. Algebraic Combin. 5(3) (1996), 191–244.Google Scholar | DOI
[11] and , ‘Some natural bigraded -modules and -Kostka coefficients’, Electron. J. Combin. 3(2) (1996), Research Paper 24. The Foata Festschrift.Google Scholar | DOI
[12] , and , ‘Explicit plethystic formulas for Macdonald -Kostka coefficients’, Sém. Lothar. Combin. 42 (1999), Art. B42m. The Andrews Festschrift (Maratea, 1998).Google Scholar
[13] , , and , ‘Generalized -Catalan numbers’, Algebr. Comb. 3(4) (2020), 855–886.Google Scholar
[14] and , ‘ Affine Hecke algebras and positivity of LLT and Macdonald polynomials’, Unpublished manuscript, 2007.Google Scholar
[15] , and , ‘A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 18(3) (2005), 735–761.Google Scholar | DOI
[16] , , , and , ‘A combinatorial formula for the character of the diagonal coinvariants’, Duke Math. J. 126(2) (2005), 195–232.Google Scholar | DOI
[17] , and , ‘A compositional shuffle conjecture specifying touch points of the Dyck path’, Canad. J. Math. 64(4) (2012), 822–844.Google Scholar | DOI
[18] , ‘Macdonald polynomials and geometry’, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., vol. 38 (Cambridge Univ. Press, Cambridge, 1999), pp. 207–254.Google Scholar
[19] , ‘Vanishing theorems and character formulas for the Hilbert scheme of points in the plane’, Invent. Math. 149 (2) (2002), 371–407.Google Scholar | DOI
[20] , ‘Conjectures on the quotient ring by diagonal invariants’, J. Algebraic Combin. 3(1) (1994), 17–76.Google Scholar | DOI
[21] , ‘Affine Springer fibers of type and combinatorics of diagonal coinvariants’, Adv. Math. 263 (2014), 88–122.Google Scholar | DOI
[22] , ‘Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials’, J. Algebra 319(8) (2008), 3480–3517.Google Scholar | DOI
[23] , ‘-hypergeometric series and Macdonald functions’, J. Algebraic Combin. 3(3) (1994), 291–305.Google Scholar | DOI
[24] , and , ‘Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties’, J. Math. Phys. 38(2) (1997), 1041–1068.Google Scholar | DOI
[25] , ‘Affine Hecke algebras and their graded version’, J. Amer. Math. Soc. 2(3) (1989), 599–635.Google Scholar | DOI
[26] , Symmetric Functions and Hall Polynomials, second edn. (The Clarendon Press, Oxford University Press, New York, 1995). With contributions by A. Zelevinsky, Oxford Science Publications.Google Scholar
[27] , ‘Affine Hecke Algebras and Orthogonal Polynomials’, Cambridge Tracts in Mathematics, vol. 157 (Cambridge University Press, Cambridge, 2003).Google Scholar | DOI
[28] , ‘Toric braids and -parking functions’, Duke Math. J. 170(18) (2021), 4123–4169.Google Scholar | DOI
[29] and , ‘A reproducing kernel for nonsymmetric Macdonald polynomials’, Duke Math. J. 91(3) (1998), 621–634.Google Scholar | DOI
[30] , ‘The shuffle algebra revisited’, Int. Math. Res. Not. IMRN (22) (2014), 6242–6275.Google Scholar | DOI
[31] , ‘On the Hall algebra of an elliptic curve, II’, Duke Math. J. 161(9) (2012), 1711–1750.Google Scholar | DOI
[32] and , ‘The elliptic Hall algebra and the -theory of the Hilbert scheme of ’, Duke Math. J. 162(2) (2013), 279–366.Google Scholar | DOI
Cité par Sources :