Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_3,
author = {Jonah Blasiak and Mark Haiman and Jennifer Morse and Anna Pun and George H. Seelinger},
title = {A {Proof} of the {Extended} {Delta} {Conjecture}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fmp.2023.3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.3/}
}
TY - JOUR AU - Jonah Blasiak AU - Mark Haiman AU - Jennifer Morse AU - Anna Pun AU - George H. Seelinger TI - A Proof of the Extended Delta Conjecture JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.3/ DO - 10.1017/fmp.2023.3 LA - en ID - 10_1017_fmp_2023_3 ER -
%0 Journal Article %A Jonah Blasiak %A Mark Haiman %A Jennifer Morse %A Anna Pun %A George H. Seelinger %T A Proof of the Extended Delta Conjecture %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.3/ %R 10.1017/fmp.2023.3 %G en %F 10_1017_fmp_2023_3
Jonah Blasiak; Mark Haiman; Jennifer Morse; Anna Pun; George H. Seelinger. A Proof of the Extended Delta Conjecture. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.3
[1] , , , and , ‘Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions’, Methods Appl. Anal. 6(3) (1999), 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III.Google Scholar | DOI
[2] , , , and , ‘A shuffle theorem for paths under any line’, Forum of Mathematics, Pi. 11, E5.Google Scholar | DOI
[3] and , ‘On the Hall algebra of an elliptic curve, I’, Duke Math. J. 161(7) (2012), 1171–1231.Google Scholar | DOI
[4] and , ‘A proof of the shuffle conjecture’, J. Amer. Math. Soc. 31(3) (2018), 661–697.Google Scholar | DOI
[5] , and , ‘The Schröder case of the generalized Delta conjecture’, European J. Combin. 81 (2019), 58–83.Google Scholar | DOI
[6] , and , ‘Theta operators, refined delta conjectures, and coinvariants’, Adv. Math. 376 (2021), 107447.Google Scholar | DOI
[7] and , ‘A proof of the compositional Delta conjecture’, Adv. Math. 402 (2022), 108342.Google Scholar | DOI
[8] and , ‘Equivariant -theory of Hilbert schemes via shuffle algebra’, Kyoto J. Math. 51(4) (2011), 831–854.Google Scholar
[9] and , ‘Some natural bigraded -modules and -Kostka coefficients’, Electron. J. Combin. 3(2) (1996), Research Paper 24, The Foata Festschrift.Google Scholar | DOI
[10] , and , ‘Explicit plethystic formulas for Macdonald -Kostka coefficients’, Sém. Lothar. Combin. 42 (1999), Art. B42m, The Andrews Festschrift (Maratea, 1998).Google Scholar
[11] , , and , ‘A proof of the delta conjecture when ’, Ann. Comb. 23(2) (2019), 317–333.Google Scholar | DOI
[12] and , ‘ Affine Hecke algebras and positivity of LLT and Macdonald polynomials ’, Unpublished manuscript, 2007.Google Scholar
[13] , , , and , ‘A combinatorial formula for the character of the diagonal coinvariants’, Duke Math. J. 126(2) (2005), 195–232.Google Scholar | DOI
[14] , and , ‘The delta conjecture’, Trans. Amer. Math. Soc. 370(6) (2018), 4029–4057.Google Scholar | DOI
[15] , and , ‘Ordered set partitions, generalized coinvariant algebras, and the delta conjecture’, Adv. Math. 329 (2018), 851–915.Google Scholar | DOI
[16] , and , ‘Hall–Littlewood expansions of Schur delta operators at ’, Sém. Lothar. Combin. 79 (2018–2019), Art. B79c.Google Scholar
[17] , ‘Vanishing theorems and character formulas for the Hilbert scheme of points in the plane’, Invent. Math. 149(2) (2002), 371–407.Google Scholar | DOI
[18] , ‘Symmetric Functions and Hall Polynomials’, second edn. (The Clarendon Press, Oxford University Press, New York, 1995), With contributions by A. Zelevinsky, Oxford Science Publications.Google Scholar
[19] , ‘The shuffle algebra revisited’, Int. Math. Res. Not. IMRN (22) (2014), 6242–6275.Google Scholar | DOI
[20] , ‘Hecke correspondences for smooth moduli spaces of sheaves’, Publ. Math. Inst. Hautes Études Sci. 135 (2022), 337–418.Google Scholar | DOI
[21] and , ‘The valley version of the extended delta conjecture’, J. Combin. Theory Ser. A 175 (2020), 105271.Google Scholar | DOI
[22] , ‘Ordered set partition statistics and the delta conjecture’, J. Combin. Theory Ser. A 154 (2018), 172–217.Google Scholar | DOI
[23] , ‘The delta conjecture at ’, Trans. Amer. Math. Soc. 369(10) (2017), 7509–7530.Google Scholar | DOI
[24] , ‘On the Hall algebra of an elliptic curve, II’, Duke Math. J. 161(9) (2012), 1711–1750.Google Scholar | DOI
[25] and , ‘The elliptic Hall algebra and the -theory of the Hilbert scheme of ’, Duke Math. J. 162(2) (2013), 279–366.Google Scholar | DOI
[26] , ‘A weighted sum over generalized Tesler matrices’, J. Algebraic Combin. 45(3) (2017), 825–855.Google Scholar | DOI
[27] , ‘A module for the delta conjecture’, Preprint, 2019, .Google Scholar | arXiv
[28] , ‘A proof of the 4-variable Catalan polynomial of the delta conjecture’, J. Comb. 10(4) (2019), 599–632.Google Scholar
Cité par Sources :