Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_26,
     author = {Chieh-Yu Chang and Yen-Tsung Chen and Yoshinori Mishiba},
     title = {On {Thakur{\textquoteright}s} basis conjecture for multiple zeta values in positive characteristic},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.26/}
}
                      
                      
                    TY - JOUR AU - Chieh-Yu Chang AU - Yen-Tsung Chen AU - Yoshinori Mishiba TI - On Thakur’s basis conjecture for multiple zeta values in positive characteristic JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.26/ DO - 10.1017/fmp.2023.26 LA - en ID - 10_1017_fmp_2023_26 ER -
%0 Journal Article %A Chieh-Yu Chang %A Yen-Tsung Chen %A Yoshinori Mishiba %T On Thakur’s basis conjecture for multiple zeta values in positive characteristic %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.26/ %R 10.1017/fmp.2023.26 %G en %F 10_1017_fmp_2023_26
Chieh-Yu Chang; Yen-Tsung Chen; Yoshinori Mishiba. On Thakur’s basis conjecture for multiple zeta values in positive characteristic. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.26
[1] , ‘t-motives’, Duke Math. J. 53(2) (1986), 457–502.Google Scholar | DOI
[2] , and , ‘Determination of the algebraic relations among special -values in positive characteristic’, Ann. of Math. (2) 160(1) (2004), 237–313.Google Scholar | DOI
[3] and , ‘Tensor powers of the Carlitz module and zeta values’, Ann. of Math. (2) 132(1) (1990), 159–191.Google Scholar | DOI
[4] and , ‘Multizeta values for F [t], their period interpretation, and relations between them’, Int. Math. Res. Not. IMRN (11) (2009), 2038–2055.Google Scholar
[5] , Une Introduction aux Motifs (Motifs Purs, Motifs Mixtes, Périodes), Panoramas et Synthéses vol. 17 (Société Mathématique de France, Paris, 2004).Google Scholar
[6] , ‘Mixed Tate motives over Z’, Ann. of Math. (2) 175(2) (2012), 949–976.Google Scholar | DOI
[7] and , ‘Multiple zeta values: from numbers to motives’, to appear in Clay Mathematics Proceedings.Google Scholar
[8] , ‘On certain functions connected with polynomials in a Galois field’, Duke Math. J. 1(2) (1935), 137–168.Google Scholar | DOI
[9] , ‘Linear independence of monomials of multizeta values in positive characteristic’, Compositio Math. 150 (2014), 1789–1808.Google Scholar | DOI
[10] , ‘Linear relations among double zeta values in positive characteristic’, Camb. J. Math. 4(3) (2016), 89–331.Google Scholar | DOI
[11] , and , ‘Algebra structure on multiple zeta values in positive characteristic’, Camb. J. Math. 10(4) (2022), 743–783.Google Scholar | DOI
[12] and , ‘On lower bounds of the dimension of multizeta values in positive characteristic’, Doc. Math. 26 (2021), 537–559.Google Scholar | DOI
[13] and , ‘On a conjecture of Furusho over function fields’, Invent. Math. 223 (2021), 49–102.Google Scholar | DOI
[14] , and , ‘An effective criterion for Eulerian multizeta values in positive characteristic’, J. Eur. Math. Soc. (JEMS) 21(2) (2019), 405–440.Google Scholar | DOI
[15] , ‘On shuffle of double zeta values over F[t]’, J. Number Theory 148 (2015), 153–163.Google Scholar | DOI
[16] and , ‘Groupes fondamentaux motiviques de Tate mixte’, Ann. Sci. École Norm. Sup. (4) 38(1) (2005), 1–56.Google Scholar | DOI
[17] , and , ‘Double zeta values and modular forms’, in Automorphic Forms and Zeta Functions (World Sci. Publ., Hackensack, NJ, 2006), 71–106.Google Scholar | DOI
[18] , ‘Multiple polylogarithms and mixed Tate motives’, .Google Scholar | arXiv
[19] , ‘L-adic zeta functions, v-series, and measures for function fields. With an addendum’, Invent. Math. 55(2) (1979), 107–119.Google Scholar | DOI
[20] , Basic Structures of Function Field Arithmetic (Springer-Verlag, Berlin, 1996).Google Scholar | DOI
[21] , ‘The algebra of multiple harmonic series’, J. Algebra 194 (1997), 477–495.Google Scholar | DOI
[22] , , , and , ‘Zagier-Hoffman’s conjectures in positive characteristic’, .Google Scholar | arXiv
[23] , and , ‘Derivation and double shuffle relations for multiple zeta values’, Compositio Math. 142 (2006), 307–338.Google Scholar | DOI
[24] and , ‘Criterion for deciding zeta-like multizeta values in positive characteristic’, Exp. Math. 25(3) (2016), 246–256.Google Scholar | DOI
[25] and , ‘Zeta-like multizeta values for F[t]’, Indian J. Pure Appl. Math. 45(5) (2014), 785–798.Google Scholar
[26] , ‘On Zagier-Hoffman’s conjectures in positive characteristic’, Ann. of Math. (2) 194(1) (2021), 361–392.Google Scholar | DOI
[27] , ‘Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms’, Invent. Math. 171(1) (2008), 123–174.Google Scholar | DOI
[28] , ‘Doubles mélanges des polylogarithmes multiples aux racines de l’unité’, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185–231.Google Scholar | DOI
[29] , ‘Mixed Tate motives and multiple zeta values’, Invent. Math. 149(2) (2002), 339–369.Google Scholar | DOI
[30] , ‘A conjectural characterization for F(t)-linear relations between multizeta values’, J. Number Theory 187, 264–287 (2018).Google Scholar | DOI
[31] , Function Field Arithmetic (World Scientific Publishing, River Edge NJ, 2004).Google Scholar | DOI
[32] , ‘Power sums with applications to multizeta and zeta zero distribution for F[t]’, Finite Fields Appl. 15(4) (2009), 534–552.Google Scholar | DOI
[33] , ‘Relations between multizeta values for F[t]’, Int. Math. Res. Not. IMRN (12) (2009), 2318–2346.Google Scholar | DOI
[34] , ‘Shuffle relations for function field multizeta values’, Int. Math. Res. Not. IMRN (11) (2010), 1973–1980.Google Scholar
[35] , ‘Multizeta values for function fields: a survey’, J. Théor. Nombres Bordeaux 29(3) (2017), 997–1023.Google Scholar | DOI
[36] , ‘Values of zeta functions and their applications’, in ECM Volume (Progress in Math.) vol. 120 (1994), 497–512.Google Scholar
[37] , Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values (Series on Number Theory and Its Applications, 12) (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).Google Scholar | DOI
Cité par Sources :