Stellahedral geometry of matroids
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.
@article{10_1017_fmp_2023_24,
     author = {Christopher Eur and June Huh and Matt Larson},
     title = {Stellahedral geometry of matroids},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.24/}
}
TY  - JOUR
AU  - Christopher Eur
AU  - June Huh
AU  - Matt Larson
TI  - Stellahedral geometry of matroids
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.24/
DO  - 10.1017/fmp.2023.24
LA  - en
ID  - 10_1017_fmp_2023_24
ER  - 
%0 Journal Article
%A Christopher Eur
%A June Huh
%A Matt Larson
%T Stellahedral geometry of matroids
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.24/
%R 10.1017/fmp.2023.24
%G en
%F 10_1017_fmp_2023_24
Christopher Eur; June Huh; Matt Larson. Stellahedral geometry of matroids. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.24

[AB16] Ardila, F. and Boocher, A., ‘The closure of a linear space in a product of lines’, J. Algebraic Combin. 43(1) (2016), 199–235.Google Scholar | DOI

[ACEP20] Ardila, F., Castillo, F., Eur, C. and Postnikov, A., ‘Coxeter submodular functions and deformations of Coxeter permutahedra’, Adv. Math. 365 (2020), 107039.Google Scholar | DOI

[ADH23] Ardila, F., Denham, G. and Huh, J., ‘Lagrangian geometry of matroids’, J. Amer. Math. Soc. 36(3) (2023), 727–794.Google Scholar | DOI

[AFR10] Ardila, F., Fink, A. and Rincón, F., ‘Valuations for matroid polytope subdivisions’, Canad. J. Math. 62(6) (2010), 1228–1245.Google Scholar | DOI

[AHK18] Adiprasito, K., Huh, J. and Katz, E., ‘Hodge theory for combinatorial geometries’, Ann. of Math. (2) 188(2) (2018), 381–452.Google Scholar | DOI

[AK06] Ardila, F. and Klivans, C. J., ‘The Bergman complex of a matroid and phylogenetic trees’, J. Combin. Theory Ser. B 96(1) (2006), 38–49.Google Scholar | DOI

[Alu99] Aluffi, P., ‘Differential forms with logarithmic poles and Chern–Schwartz–MacPherson classes of singular varieties’, C. R. Acad. Sci. Paris Sér. I Math. 329(7) (1999), 619–624.Google Scholar | DOI

[AMSS] Aluffi, P., Mihalcea, L. C, Schürmann, J. and Su, C., ‘Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells’, Duke Math. J., To appear.Google Scholar

[AP15] Anderson, D. and Payne, S., ‘Operational -theory’, Doc. Math. 20 (2015), 357–399.Google Scholar | DOI

[AR17] Arzhantsev, I. and Romaskevich, E., ‘Additive actions on toric varieties’, Proc. Amer. Math. Soc. 145(5) (2017), 1865–1879.Google Scholar | DOI

[Ard03] Ardila, F., ‘The Catalan matroid’, J. Combin. Theory Ser. A 104(1) (2003), 49–62.Google Scholar | DOI

[Ard22] Ardila, F., ‘The geometry of geometries: Matroid theory, old and new’, Proceedings of the International Congress of Mathematicians 2022, To appear.Google Scholar

[AS23] Ardila, F. and Sanchez, M., ‘Valuations and the Hopf monoid of generalized permutahedra’, Int. Math. Res. Not. IMRN (5) (2023), 4149–4224.Google Scholar | DOI

[BB05] Björner, A. and Brenti, F., Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231 (Springer, New York, 2005).Google Scholar

[BdM06] Bonin, J. E. and De Mier, A., ‘Lattice path matroids: Structural properties. European J. Combin. 27(5) (2006), 701–738.Google Scholar | DOI

[BEST23] Berget, A., Eur, C., Spink, H. and Tseng, D., ‘Tautological classes of matroids’, Invent. Math. 233(2) (2023), 951–1039.Google Scholar | DOI

[BG09] Bruns, W. and Gubeladze, J., Polytopes, Rings, and -theory, Springer Monographs in Mathematics (Springer, Dordrecht, 2009).Google Scholar

[BH20] Brändén, P. and Huh, J., ‘Lorentzian polynomials’, Ann. of Math. (2) 192(3) (2020), 821–891.Google Scholar | DOI

[BHM+20] Braden, T., Huh, J., Matherne, J., Proudfoot, N. and Wang, B., ‘Singular Hodge theory for combinatorial geometries’, Preprint, 2020, .Google Scholar | arXiv

[BHM+22] Braden, T., Huh, J., Matherne, J. P., Proudfoot, N. and Wang, B., ‘A semi-small decomposition of the Chow ring of a matroid’, Adv. Math. 409 (2022), Paper No. 108646.Google Scholar | DOI

[BLP23] Brändén, P., Leake, J. and Pak, I., ‘Lower bounds for contingency tables via Lorentzian polynomials’, Israel J. Math. 253(1) (2023), 43–90.Google Scholar | DOI

[Bri97] Brion, M., ‘The structure of the polytope algebra’, Tohoku Math. J. (2) 49(1) (1997), 1–32.Google Scholar | DOI

[Bri09] Brion, M., ‘Vanishing theorems for Dolbeault cohomology of log homogeneous varieties’, Tohoku Math. J. (2) 61(3) (2009), 365–392.Google Scholar | DOI

[CD06] Carr, M. P. and Devadoss, S. L., ‘Coxeter complexes and graph-associahedra’, Topology Appl. 153(12) (2006), 2155–2168.Google Scholar | DOI

[CDMeS22] Cameron, A., Dinu, R., Michał Ek, M. and Seynnaeve, T., ‘Flag matroids: Algebra and geometry’, in Interactions with Lattice Polytopes, Springer Proc. Math. Stat., vol. 386 (Springer, Cham, 2022), 73–114.Google Scholar | DOI

[CLS11] Cox, D. A., Little, J. B. and Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics, vol. 124 (American Mathematical Society, Providence, RI, 2011).Google Scholar | DOI

[Cra69] Crapo, H. H., ‘The Tutte polynomial’, Aequationes Math. 3 (1969), 211–229, 1969.Google Scholar | DOI

[DCP95] De Concini, C. and Procesi, C., ‘Wonderful models of subspace arrangements’, Selecta Math. (N.S.) 1(3) (1995), 459–494.Google Scholar | DOI

[Dev09] Devadoss, S. L., ‘A realization of graph associahedra’, Discrete Math. 309(1) (2009), 271–276.Google Scholar | DOI

[DF10] Derksen, H. and Fink, A., ‘Valuative invariants for polymatroids’, Adv. Math. 225(4) (2010), 1840–1892.Google Scholar | DOI

[Edm70] Edmonds, J., ‘Submodular functions, matroids, and certain polyhedra’, in Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) (Gordon and Breach, New York, 1970), 69–87.Google Scholar

[EG98] Edidin, D. and Graham, W., ‘Equivariant intersection theory’, Invent. Math. 131(3) (1998), 595–634.Google Scholar | DOI

[EH16] Eisenbud, D. and Harris, J., 3264 and All That—A Second Course in Algebraic Geometry (Cambridge University Press, Cambridge, 2016).Google Scholar | DOI

[Eis95] Eisenbud, D., Commutative Algebra, Graduate Texts in Mathematics, vol. 150 (Springer-Verlag, New York, 1995).Google Scholar

[Eur] Eur, C., ‘Essence of independence: Hodge theory of matroids since June Huh’, Bull. Am. Math. Soc., To appear.Google Scholar

[FP05] Fujino, O. and Payne, S., ‘Smooth complete toric threefolds with no nontrivial nef line bundles’, Proc. Japan Acad. Ser. A Math. Sci. 81(10) (2006), 174–179.Google Scholar

[FS97] Fulton, W. and Sturmfels, Bernd, ‘Intersection theory on toric varieties’, Topology 36(2) (1997), 335–353, 1997.Google Scholar | DOI

[FS05] Feichtner, E. M. and Sturmfels, B., ‘Matroid polytopes, nested sets and Bergman fans’, Port. Math. (N.S.) 62(4) (2005), 437–468.Google Scholar

[Ful93] Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies , vol. 131 (Princeton University Press, Princeton, NJ, 1993). The William H. Roever Lectures in Geometry.Google Scholar | DOI

[FY04] Feichtner, E. M. and Yuzvinsky, S., ‘Chow rings of toric varieties defined by atomic lattices’, Invent. Math. 155(3) (2004), 515–536.Google Scholar | DOI

[GGMS87] Gelfand, I. M., Goresky, R. M., Macpherson, R. D. and Serganova, V. V., ‘Combinatorial geometries, convex polyhedra, and Schubert cells’, Adv. in Math. 63(3) (1987), 301–316.Google Scholar | DOI

[Gro78] Groemer, H., ‘On the extension of additive functionals on classes of convex sets’, Pacific J. Math. 75(2) (1978), 397–410.Google Scholar | DOI

[Had57] Hadwiger, H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957).Google Scholar | DOI

[Ham17] Hampe, S., ‘The intersection ring of matroids’, J. Combin. Theory Ser. B 122 (2017), 578–614.Google Scholar | DOI

[HSW22] Huh, J., Schröter, B. and Wang, B., ‘Correlation bounds for fields and matroids’, J. Eur. Math. Soc. (JEMS) 24(4) (2022), 1335–1351.Google Scholar | DOI

[HT99] Hassett, B. and Tschinkel, Y., ‘Geometry of equivariant compactifications of ’, Internat. Math. Res. Notices (22) (1999), 1211–1230.Google Scholar | DOI

[HW17] Huh, J. and Wang, B., ‘Enumeration of points, lines, planes, etc.’, Acta Math. 218(2) (2017), 297–317.Google Scholar | DOI

[Kat09] Katz, E., ‘A tropical toolkit’, Expo. Math. 27(1) (2009), 1–36.Google Scholar | DOI

[Kly84] Klyachko, A. A., ‘Vector bundles on Demazure models’, Sel. Math. Sov. 3 (1983/84), 41–44. Selected translations.Google Scholar

[Kun86] Kung, J. P. S., A Source Book in Matroid Theory (Birkhäuser Boston, Inc., Boston, MA, 1986). With a foreword by Gian-Carlo Rota.Google Scholar | DOI

[McM89] Mcmullen, P., ‘The polytope algebra’, Adv. Math. 78(1) (1989), 76–130.Google Scholar | DOI

[McM93a] Mcmullen, P., ‘On simple polytopes’, Invent. Math. 113(2) (1993), 419–444.Google Scholar | DOI

[McM93b] Mcmullen, P., ‘Valuations and dissections’, in Handbook of Convex Geometry , Vol. A, B (North-Holland, Amsterdam, 1993), 933–988.Google Scholar | DOI

[McM09] Mcmullen, P., ‘Valuations on lattice polytopes’, Adv. Math. 220(1) (2009), 303–323.Google Scholar | DOI

[MM] Mastroeni, M. and Mccullough, J., ‘Chow rings of matroids are Koszul’, Math. Ann., To appear.Google Scholar

[Mor93] Morelli, R., ‘The -theory of a toric variety’, Adv. Math. 100(2) (1993), 154–182.Google Scholar | DOI

[MS15] Maclagan, D. and Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161 (American Mathematical Society, Providence, RI, 2015).Google Scholar | DOI

[Nie74] Nielsen, A., ‘Diagonalizably linearized coherent sheaves’, Bull. Soc. Math. France 102 (1974), 85–97.Google Scholar | DOI

[Ols05] Olsson, M. C., ‘The logarithmic cotangent complex’, Math. Ann. 333(4) (2005), 859–931.Google Scholar | DOI

[Oxl11] J.s Oxley. Matroid Theory, 2nd edn., Oxford Graduate Texts in Mathematics, vol. 21 (Oxford University Press, Oxford, 2011).Google Scholar

[Pay06] Payne, S., ‘Equivariant Chow cohomology of toric varieties’, Math. Res. Lett. 13(1) (2006), 29–41.Google Scholar | DOI

[Pos09] Postnikov, A., ‘Permutohedra, associahedra, and beyond’, Int. Math. Res. Not. IMRN (6) (2009), 1026–1106.Google Scholar | DOI

[PRW08] Postnikov, A., Reiner, V. and Williams, L., ‘Faces of generalized permutohedra’, Doc. Math. 13 (2008), 207–273.Google Scholar | DOI

[PS04] Postnikov, A. and Shapiro, B., ‘Trees, parking functions, syzygies, and deformations of monomial ideals’, Trans. Amer. Math. Soc. 356(8) (2004), 3109–3142.Google Scholar | DOI

[Sal68] Sallee, G. T., ‘Polytopes, valuations, and the Euler relation’, Canadian J. Math. 20 (1968), 1412–1424.Google Scholar | DOI

[Sch14] Schneider, R., Convex Bodies: The Brunn–Minkowski Theory, expanded edition, Encyclopedia of Mathematics and Its Applications, vol. 151 (Cambridge University Press, Cambridge, 2014).Google Scholar

[Spe08] Speyer, D. E., ‘Tropical linear spaces’, SIAM J. Discrete Math. 22(4) (2008), 1527–1558.Google Scholar | DOI

[SSV22] Shapiro, B., Smirnov, I. and Vaintrob, A., ‘Around generalized external zomotopal algebras of graphs’, Preprint, 2022, .Google Scholar | arXiv

[Stu02] Sturmfels, B., Solving Systems of Polynomial Equations, CBMS Regional Conference Series in Mathematics, vol. 97 (American Mathematical Society, Providence, RI, 2002). Published for the Conference Board of the Mathematical Science, Washington, DC.Google Scholar | DOI

[Tut67] Tutte, W. T., ‘On dichromatic polynominals’, J. Combinatorial Theory 2 (1967), 301–320.Google Scholar | DOI

[TW15] Tsukerman, E. and Williams, L., ‘Bruhat interval polytopes’, Adv. Math. 285 (2015), 766–810.Google Scholar | DOI

[Vol57] Volland, W., ‘Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum’, Arch. Math. (Basel) 8 (1957), 144–149.Google Scholar | DOI

[VV03] Vezzosi, G. and Vistoli, A., ‘Higher algebraic -theory for actions of diagonalizable groups’, Invent. Math. 153(1) (2003), 1–44.Google Scholar | DOI

[Wag98] Wagner, D. G., ‘The algebra of flows in graphs’, Adv. in Appl. Math. 21(4) (1998), 644–684.Google Scholar | DOI

[Wel76] Welsh, D. J. A., Matroid Theory, L. M. S. Monographs, No. 8 (Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976).Google Scholar

[Whi35] Whitney, H., ‘On the abstract properties of linear dependence’, Amer. J. Math. 57(3) (1935), 509–533.Google Scholar | DOI

Cité par Sources :