Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_23,
     author = {Takashi Imamura and Matteo Mucciconi and Tomohiro Sasamoto},
     title = {Skew {RSK} dynamics: {Greene} invariants, affine crystals and applications to {q-Whittaker} polynomials},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/}
}
                      
                      
                    TY - JOUR AU - Takashi Imamura AU - Matteo Mucciconi AU - Tomohiro Sasamoto TI - Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/ DO - 10.1017/fmp.2023.23 LA - en ID - 10_1017_fmp_2023_23 ER -
%0 Journal Article %A Takashi Imamura %A Matteo Mucciconi %A Tomohiro Sasamoto %T Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/ %R 10.1017/fmp.2023.23 %G en %F 10_1017_fmp_2023_23
Takashi Imamura; Matteo Mucciconi; Tomohiro Sasamoto. Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.23
[1] and , ‘Finite-dimensional representations of quantum affine algebras’, Publ. Res. Inst. Math. Sci. 33(5) (1997), 839–867.Google Scholar | DOI
[2] , and , Special Functions (Cambridge Univ. Press, Cambridge, 2000).Google Scholar
[3] , The Theory of Partitions, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 1984).Google Scholar | DOI
[4] , and , ‘On the distribution of the length of the longest increasing subsequence of random permutations’, J. Amer. Math. Soc. 12(4) (1999), 1119–1178.Google Scholar | DOI
[5] and , ‘Algebraic aspects of increasing subsequences’, Duke Math. J. 109(1) (2001), 1–66.Google Scholar | DOI
[6] and , ‘Symmetrized random permutations’, in Random Matrix Models and Their Applications (Cambridge Univ. Press, Cambridge, 2001), 1–29.Google Scholar
[7] , and , ‘Half-space Macdonald processes’, Forum Math. Pi 8 (2020), e11.Google Scholar | DOI
[8] , , and , ‘Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process’, Duke Math. J. 167(13) (2018), 2457–2529.Google Scholar | DOI
[9] and , ‘The periodic Schur process and free fermions at finite temperature’, Math. Phys. Anal. Geom. 22 (2019), 3.Google Scholar | DOI
[10] , , and , ‘New edge asymptotics of skew Young diagrams via free boundaries’, in 31st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2019), Vol. 82.Google Scholar
[11] , ‘Periodic Schur process and cylindric partitions’, Duke Math. J. 140(3) (2007), 391–468.Google Scholar | DOI
[12] , and , ‘Directed random polymers via nested contour integrals’, Ann. Physics 368 (2016), 191–247.Google Scholar | DOI
[13] , and , ‘Between the stochastic six vertex model and Hall–Littlewood processes’, Preprint, 2016, [math.PR].Google Scholar | arXiv | DOI
[14] and , ‘Macdonald processes’, Probab. Theory Related Fields 158 (2014), 225–400.Google Scholar | DOI
[15] and , ‘Spin -Whittaker polynomials’, Adv. Math. 376 (2021), 107449.Google Scholar | DOI
[16] and , Crystal Bases (World Scientific, Singapore, 2017).Google Scholar | DOI
[17] , and , ‘Matrix product formula for Macdonald polynomials’, J. Phys. A 48(38) (2015), 384001.Google Scholar | DOI
[18] , ‘Double affine Hecke algebras and Macdonald’s conjectures’, Ann. of Math. (2) 141(1) (1995), 191–216.Google Scholar | DOI
[19] , , , and , ‘An affine generalization of evacuation’, Sel. Math. 28(67) (2022).Google Scholar | DOI
[20] , and , ‘Monodromy in Kazhdan–Lusztig cells in affine type ’, Math. Ann. 386(3) (2023), 1891–1949.Google Scholar | DOI
[21] , and , ‘Matrix-Ball construction of affine Robinson–Schensted correspondence’, Selecta Math. (N.S.) 24 (2018), 667–750.Google Scholar | DOI
[22] and , ‘Arrays and the combinatorics of Young tableaux’, Russian Math. Surveys 60(2) (2005), 269–334.Google Scholar | DOI
[23] and , ‘Bi-crystals and crystal duality’ (2004). URL: http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1458.eps.Google Scholar
[24] , and , ‘The directed landscape’, Acta Math. 229(2) (2022), 201–285.Google Scholar | DOI
[25] , and , ‘Hall–Littlewood functions and Kostka–Foulkes polynomials in representation theory’, Sémin. Lothar. Comb. [electronic only] 32 (1994), 38.Google Scholar
[26] , and , ‘Duality theorems for current groups’, Israel J. Math. 248(1) (2022), 441–479.Google Scholar | DOI
[27] , ‘Generalized Robinson–Schensted–Knuth correspondence’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), 156–175 (in Russian).Google Scholar
[28] and , ‘A Littlewood–Richardson miscellany’, European J. Combin. 14(3) (1993), 191–212.Google Scholar | DOI
[29] , and , ‘Demazure structure inside Kirillov–Reshetikhin crystals’, J. Algebra 309(1) (2007), 386–404.Google Scholar | DOI
[30] , and , ‘Energy functions in box ball systems’, Internat. J. Modern Phys. A 15(9) (2000), 1379–1392.Google Scholar | DOI
[31] , Young Tableaux with Applications to Representation Theory and Geometry (Cambridge Univ. Press, Cambridge, 1997).Google Scholar
[32] and , ‘Modified Macdonald polynomials and integrability’, Comm. Math. Phys. 374 (2020), 1809–1876.Google Scholar | DOI
[33] and , ‘On certain graded -modules and the -Kostka polynomials’, Adv. Math. 94(1) (1992), 82–138.Google Scholar | DOI
[34] , and , ‘On -deformed Whittaker functions I, II, III’, Comm. Math. Phys. 294 (2010), 97–119, 121–143.Google Scholar | DOI
[35] and , ‘Duality and bicrystals on infinite binary matrices’, Ann. Inst. Henri Poincaré Comb. Phys. Interact. (2023).Google Scholar | DOI
[36] , An extension of Schensted’s theorem, Adv. Math. 14(2) (1974), 254–265.Google Scholar | DOI
[37] , and , A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 4(18) (2005), 735–761.Google Scholar | DOI
[38] , ‘Hilbert schemes, polygraphs and the Macdonald positivity conjecture’, J. Amer. Math. Soc. 14(4) 2001, 941–1006.Google Scholar | DOI
[39] , ‘Dual equivalence with applications, including a conjecture of Proctor’, Discrete Math. 99(1) (1992), 79–113.Google Scholar | DOI
[40] , , , , and , ‘The automata related to crystals of symmetric tensors’, J. Math. Phys. 42(1) (2001), 274–308.Google Scholar | DOI
[41] , , , and , ‘Paths, crystals and fermionic formulae’, in MathPhys Odyssey 2001 vol. 23 (Birkhäuser, Boston, MA, 2002), 205–272.Google Scholar | DOI
[42] and , Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math. (Amer. Math. Soc., Providence, RI, 2002).Google Scholar | DOI
[43] , and , ‘Stationary stochastic higher spin six vertex model and -Whittaker measure’, Probab. Theory Related Fields 177 (2020), 923–1042.Google Scholar | DOI
[44] , and , ‘Identity between restricted Cauchy sums for the -Whittaker and skew Schur polynomials’, Preprint, 2021, [math.CO].Google Scholar | arXiv
[45] , and , ‘Solvable models in the KPZ class: approach through periodic and free boundary Schur measures’, Preprint, 2022, [math.PR].Google Scholar | arXiv
[46] , and , ‘Integrable structure of box–ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry’, J. Phys. A 45(7) (2012), 073001.Google Scholar | DOI
[47] , ‘Shape fluctuations and random matrices’, Comm. Math. Phys. 209(2) (2000), 437–476.Google Scholar | DOI
[48] , , , , and , ‘Affine crystals and vertex models’, Internat. J. Modern Phys. A 7(supp01a) (1992), 449–484.Google Scholar | DOI
[49] , ‘Crystalizing the -analogue of universal enveloping algebras’, Comm. Math. Phys. 133(2) (1990), 249–260.Google Scholar | DOI
[50] , ‘On crystal bases of the -analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991), 465–516.Google Scholar | DOI
[51] , ‘On level-zero representation of quantized affine algebras’, Duke Math. J. 112(1) (2002), 117–175.Google Scholar | DOI
[52] , ‘On subfield symmetric spaces over a finite field’, Osaka J. Math. 28(4) (1991), 759–791.Google Scholar
[53] , ‘A -series identity involving Schur functions and related topics’, Osaka J. Math. 36(1) (1999), 157–176.Google Scholar
[54] , ‘Permutations, matrices, and generalized Young tableaux’, Pacific J. Math. 34(3) (1970), 709–727.Google Scholar | DOI
[55] and , ‘Replica Bethe Ansatz solution to the Kardar–Parisi–Zhang equation on the half-line’, SciPost Phys. 8 (2020), 35.Google Scholar | DOI
[56] , , , and , ‘Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection’, Nuclear Phys. B 740(3) (2006), 299–327.Google Scholar | DOI
[57] , and , ‘Theta functions, elliptic hypergeometric series, and Kawanaka’s Macdonald polynomial conjecture’, SIGMA 5 (2009), 055.Google Scholar
[58] and , ‘Crystal energy functions via the charge in types A and C’, Math. Z. 273 (2013), 401–426.Google Scholar | DOI
[59] and , ‘A variational problem for random Young tableaux’, Adv. Math. 26(2) (1977), 206–222.Google Scholar | DOI
[60] , Algebraic Combinatorics on Words, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 2002).Google Scholar | DOI
[61] , ‘Canonical bases arising from quantized enveloping algebras’, J. Amer. Math. Soc. 3(2) (1990), 447–498.Google Scholar | DOI
[62] , Symmetric Functions and Hall Polynomials, second edn. (Oxford Univ. Press, Oxford, 1995).Google Scholar
[63] and , ‘ -randomized Robinson–Schensted–Knuth correspondences and random polymers’, Ann. Inst. Henri Poincaré D 4(1) (2017), 1–123.Google Scholar | DOI
[64] and , ‘Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials’, Math. Z. 238 (2016), 937–978.Google Scholar | DOI
[65] and , ‘Kostka polynomials and energy functions in solvable lattice models’, Selecta Math. (N.S.) 3 (1997), 547–599.Google Scholar | DOI
[66] and , ‘A q-weighted version of the Robinson–Schensted algorithm’, Electron. J. Probab. 18(95) (2013), 1–25.Google Scholar
[67] , and , ‘Virtual crystals and fermionic formulas of type , , and ’, Represent. Theory 7 (2003), 101–163.Google Scholar | DOI
[68] and , ‘Stochastic higher spin six vertex model and -TASEPs’, Adv. Math. 317 (2017), 473–525.Google Scholar | DOI
[69] , ‘Periodic permutations and the Robinson–Schensted correspondence’, unpublished note (2003). URL: https://www.math.ucla.edu/pak/papers/inf2.eps.Google Scholar
[70] and , ‘Scale invariance of the PNG droplet and the Airy process’, J. Stat. Phys. 108 (2002), 1071–1106.Google Scholar | DOI
[71] and , Bounded Littlewood Identities, Mem. Amer. Math. Soc. (Amer. Math. Soc., Providence, RI, 2021).Google Scholar | DOI
[72] , ‘On the representations of the symmetric group’, Amer. J. Math. 60(3) (1938), 745–760.Google Scholar | DOI
[73] and , ‘Robinson–Schensted algorithms for skew tableaux’, J. Combin. Theory Ser. A 55(2) (1990), 161–193.Google Scholar | DOI
[74] , The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (Springer, New York, 2001).Google Scholar | DOI
[75] , ‘On the connection between Macdonald polynomials and Demazure characters’, J. Algebraic Combin. 11 (2000), 269–275.Google Scholar | DOI
[76] , ‘Longest increasing and decreasing subsequences’, Canad. J. Math. 13 (1961), 179–191.Google Scholar | DOI
[77] and , ‘Demazure crystals, Kirillov–Reshetikhin crystals, and the energy function’, Electron. J. Combin. 19(P4) (2012), 42.Google Scholar | DOI
[78] , ‘La correspondance de Robinson’, in Combinatoire et Représentation du Groupe Symétrique, Lecture Notes in Math., Vol. 59 (Springer, Berlin, Heidelberg, 1977), 59–113.Google Scholar | DOI
[79] , ‘The generalized Robinson–Schensted algorithm on the affine Weyl group of type ’, J. Algebra 139(2) (1991), 364–394.Google Scholar
[80] , ‘Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties’, J. Algebraic Combin. 15 (2002), 151–187.Google Scholar | DOI
[81] , ‘Crystals for dummies’, unpublished note (2005). URL: https://www.aimath.org/WWN/kostka/crysdumb.eps.Google Scholar
[82] , Enumerative Combinatorics vol. 2 (Cambridge Univ. Press, Cambridge, 2001). With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.Google Scholar
[83] , ‘On some soliton systems defined by using boxes and balls’, in Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA ’93), Hawaii (1993), 555–558. URL: https://hakotama.jp/laboratory/works/public/93t-nolta.pdf.Google Scholar
[84] and , ‘A soliton cellular automaton’, J. Phys. Soc. Japan 59(10) (1990), 3514–3519.Google Scholar | DOI
[85] , and , ‘Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization’, Inverse Problems 15(6) (1999), 1639.Google Scholar | DOI
[86] , ‘Double crystals of binary and integral matrices’, Electron. J. Combin. 13 (2006), R86.Google Scholar | DOI
[87] and , ‘Asymptotics of the Plancherel measure of the symmetric group and the limiting form of young tableaux’, Doklady AN SSSR 233(6) (1977), 1024–1027. English translation: Soviet Math. Doklady (1977), 527–531.Google Scholar
[88] , ‘Une forme geometrique de la correspondance de Robinson–Schensted’, in Combinatoire et Représentation du Groupe Symétrique (Springer, Berlin–Heidelberg, 1977), 29–58.Google Scholar | DOI
[89] , ‘Growth diagrams and edge local rules’, In L. Ferrari and M. Vamvakari (Eds.), Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combinatorial Structures, GASCom 2018, Athens, Greece, June 18-20, CEUR Workshop Proceedings, Vol. 2113 (2018), 202–211.Google Scholar
[90] , ‘A generalization of MacMahon’s formula’, Trans. Amer. Math. Soc. 361(5) (2009), 2789–2804.Google Scholar | DOI
[91] , ‘Rogers–Szegö polynomials and Hall–Littlewood symmetric functions’, J. Algebra 303(2) (2006), 810–830. Computational Algebra.Google Scholar | DOI
Cité par Sources :
