Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Iterating the skew RSK correspondence discovered by Sagan and Stanley in the late 1980s, we define deterministic dynamics on the space of pairs of skew Young tableaux $(P,Q)$. We find that these skew RSK dynamics display conservation laws which, in the picture of Viennot’s shadow line construction, identify generalizations of Greene invariants. The introduction of a novel realization of $0$-th Kashiwara operators reveals that the skew RSK dynamics possess symmetries induced by an affine bicrystal structure, which, combined with connectedness properties of Demazure crystals, leads to the linearization of the time evolution. Studying asymptotic evolution of the dynamics started from a pair of skew tableaux $(P,Q)$, we discover a new bijection $\Upsilon : (P,Q) \mapsto (V,W; \kappa , \nu )$. Here, $(V,W)$ is a pair of vertically strict tableaux, that is, column strict fillings of Young diagrams with no condition on rows, with the shape prescribed by the Greene invariant, $\kappa $ is an array of nonnegative weights and $\nu $ is a partition. An application of this construction is the first bijective proof of Cauchy and Littlewood identities involving q-Whittaker polynomials. New identities relating sums of q-Whittaker and Schur polynomials are also presented.
@article{10_1017_fmp_2023_23,
     author = {Takashi Imamura and Matteo Mucciconi and Tomohiro Sasamoto},
     title = {Skew {RSK} dynamics: {Greene} invariants, affine crystals and applications to {q-Whittaker} polynomials},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/}
}
TY  - JOUR
AU  - Takashi Imamura
AU  - Matteo Mucciconi
AU  - Tomohiro Sasamoto
TI  - Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/
DO  - 10.1017/fmp.2023.23
LA  - en
ID  - 10_1017_fmp_2023_23
ER  - 
%0 Journal Article
%A Takashi Imamura
%A Matteo Mucciconi
%A Tomohiro Sasamoto
%T Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.23/
%R 10.1017/fmp.2023.23
%G en
%F 10_1017_fmp_2023_23
Takashi Imamura; Matteo Mucciconi; Tomohiro Sasamoto. Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.23

[1] Akasaka, T. and Kashiwara, M., ‘Finite-dimensional representations of quantum affine algebras’, Publ. Res. Inst. Math. Sci. 33(5) (1997), 839–867.Google Scholar | DOI

[2] Andrews, G., Askey, R. and Roy, R., Special Functions (Cambridge Univ. Press, Cambridge, 2000).Google Scholar

[3] Andrews, G. E., The Theory of Partitions, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 1984).Google Scholar | DOI

[4] Baik, J., Deift, P. and Johansson, K., ‘On the distribution of the length of the longest increasing subsequence of random permutations’, J. Amer. Math. Soc. 12(4) (1999), 1119–1178.Google Scholar | DOI

[5] Baik, J. and Rains, E. M., ‘Algebraic aspects of increasing subsequences’, Duke Math. J. 109(1) (2001), 1–66.Google Scholar | DOI

[6] Baik, J. and Rains, E. M., ‘Symmetrized random permutations’, in Random Matrix Models and Their Applications (Cambridge Univ. Press, Cambridge, 2001), 1–29.Google Scholar

[7] Barraquand, G., Borodin, A. and Corwin, I., ‘Half-space Macdonald processes’, Forum Math. Pi 8 (2020), e11.Google Scholar | DOI

[8] Barraquand, G., Borodin, A., Corwin, I. and Wheeler, M., ‘Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process’, Duke Math. J. 167(13) (2018), 2457–2529.Google Scholar | DOI

[9] Betea, D. and Bouttier, J., ‘The periodic Schur process and free fermions at finite temperature’, Math. Phys. Anal. Geom. 22 (2019), 3.Google Scholar | DOI

[10] Betea, D., Bouttier, J., Nejjar, P. and Vuletić, M., ‘New edge asymptotics of skew Young diagrams via free boundaries’, in 31st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2019), Vol. 82.Google Scholar

[11] Borodin, A., ‘Periodic Schur process and cylindric partitions’, Duke Math. J. 140(3) (2007), 391–468.Google Scholar | DOI

[12] Borodin, A., Bufetov, A. and Corwin, I., ‘Directed random polymers via nested contour integrals’, Ann. Physics 368 (2016), 191–247.Google Scholar | DOI

[13] Borodin, A., Bufetov, A. and Wheeler, M., ‘Between the stochastic six vertex model and Hall–Littlewood processes’, Preprint, 2016, [math.PR].Google Scholar | arXiv | DOI

[14] Borodin, A. and Corwin, I., ‘Macdonald processes’, Probab. Theory Related Fields 158 (2014), 225–400.Google Scholar | DOI

[15] Borodin, A. and Wheeler, M., ‘Spin -Whittaker polynomials’, Adv. Math. 376 (2021), 107449.Google Scholar | DOI

[16] Bump, D. and Schilling, A., Crystal Bases (World Scientific, Singapore, 2017).Google Scholar | DOI

[17] Cantini, L., De Gier, J. and Wheeler, M., ‘Matrix product formula for Macdonald polynomials’, J. Phys. A 48(38) (2015), 384001.Google Scholar | DOI

[18] Cherednik, I., ‘Double affine Hecke algebras and Macdonald’s conjectures’, Ann. of Math. (2) 141(1) (1995), 191–216.Google Scholar | DOI

[19] Chmutov, M., Frieden, G., Kim, D., Lewis, J. B. and Yudovina, E., ‘An affine generalization of evacuation’, Sel. Math. 28(67) (2022).Google Scholar | DOI

[20] Chmutov, M., Lewis, J. B. and Pylyavskyy, P., ‘Monodromy in Kazhdan–Lusztig cells in affine type ’, Math. Ann. 386(3) (2023), 1891–1949.Google Scholar | DOI

[21] Chmutov, M., Pylyavskyy, P. and Yudovina, E., ‘Matrix-Ball construction of affine Robinson–Schensted correspondence’, Selecta Math. (N.S.) 24 (2018), 667–750.Google Scholar | DOI

[22] Danilov, V. I. and Koshevoi, G. A., ‘Arrays and the combinatorics of Young tableaux’, Russian Math. Surveys 60(2) (2005), 269–334.Google Scholar | DOI

[23] Danilov, V. I. and Koshevoy, G. A., ‘Bi-crystals and crystal duality’ (2004). URL: http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1458.eps.Google Scholar

[24] Dauvergne, D., Ortmann, J. and Virag, B., ‘The directed landscape’, Acta Math. 229(2) (2022), 201–285.Google Scholar | DOI

[25] Désarménien, J., Leclerc, B. and Thibon, J.-Y., ‘Hall–Littlewood functions and Kostka–Foulkes polynomials in representation theory’, Sémin. Lothar. Comb. [electronic only] 32 (1994), 38.Google Scholar

[26] Feigin, E., Khoroshkin, A. and Makedonskyi, I., ‘Duality theorems for current groups’, Israel J. Math. 248(1) (2022), 441–479.Google Scholar | DOI

[27] Fomin, S., ‘Generalized Robinson–Schensted–Knuth correspondence’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), 156–175 (in Russian).Google Scholar

[28] Fomin, S. and Greene, C., ‘A Littlewood–Richardson miscellany’, European J. Combin. 14(3) (1993), 191–212.Google Scholar | DOI

[29] Fourier, G., Schilling, A. and Shimozono, M., ‘Demazure structure inside Kirillov–Reshetikhin crystals’, J. Algebra 309(1) (2007), 386–404.Google Scholar | DOI

[30] Fukuda, K., Okado, M. and Yamada, Y., ‘Energy functions in box ball systems’, Internat. J. Modern Phys. A 15(9) (2000), 1379–1392.Google Scholar | DOI

[31] Fulton, W., Young Tableaux with Applications to Representation Theory and Geometry (Cambridge Univ. Press, Cambridge, 1997).Google Scholar

[32] Garbali, A. and Wheeler, M., ‘Modified Macdonald polynomials and integrability’, Comm. Math. Phys. 374 (2020), 1809–1876.Google Scholar | DOI

[33] Garsia, A. M. and Procesi, C., ‘On certain graded -modules and the -Kostka polynomials’, Adv. Math. 94(1) (1992), 82–138.Google Scholar | DOI

[34] Gerasimov, A., Lebedev, D. and Oblezin, S., ‘On -deformed Whittaker functions I, II, III’, Comm. Math. Phys. 294 (2010), 97–119, 121–143.Google Scholar | DOI

[35] Gerber, T. and Lecouvey, C., ‘Duality and bicrystals on infinite binary matrices’, Ann. Inst. Henri Poincaré Comb. Phys. Interact. (2023).Google Scholar | DOI

[36] Greene, C., An extension of Schensted’s theorem, Adv. Math. 14(2) (1974), 254–265.Google Scholar | DOI

[37] Haglund, J., Haiman, M. and Loehr, N., A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 4(18) (2005), 735–761.Google Scholar | DOI

[38] Haiman, M., ‘Hilbert schemes, polygraphs and the Macdonald positivity conjecture’, J. Amer. Math. Soc. 14(4) 2001, 941–1006.Google Scholar | DOI

[39] Haiman, M. D., ‘Dual equivalence with applications, including a conjecture of Proctor’, Discrete Math. 99(1) (1992), 79–113.Google Scholar | DOI

[40] Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T. and Tokihiro, T., ‘The automata related to crystals of symmetric tensors’, J. Math. Phys. 42(1) (2001), 274–308.Google Scholar | DOI

[41] Hatayama, G., Kuniba, A., Okado, M., Takagi, T. and Tsuboi, Z., ‘Paths, crystals and fermionic formulae’, in MathPhys Odyssey 2001 vol. 23 (Birkhäuser, Boston, MA, 2002), 205–272.Google Scholar | DOI

[42] Hong, J. and Kang, S. J., Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math. (Amer. Math. Soc., Providence, RI, 2002).Google Scholar | DOI

[43] Imamura, T., Mucciconi, M. and Sasamoto, T., ‘Stationary stochastic higher spin six vertex model and -Whittaker measure’, Probab. Theory Related Fields 177 (2020), 923–1042.Google Scholar | DOI

[44] Imamura, T., Mucciconi, M. and Sasamoto, T., ‘Identity between restricted Cauchy sums for the -Whittaker and skew Schur polynomials’, Preprint, 2021, [math.CO].Google Scholar | arXiv

[45] Imamura, T., Mucciconi, M. and Sasamoto, T., ‘Solvable models in the KPZ class: approach through periodic and free boundary Schur measures’, Preprint, 2022, [math.PR].Google Scholar | arXiv

[46] Inoue, R., Kuniba, A. and Takagi, T., ‘Integrable structure of box–ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry’, J. Phys. A 45(7) (2012), 073001.Google Scholar | DOI

[47] Johansson, K., ‘Shape fluctuations and random matrices’, Comm. Math. Phys. 209(2) (2000), 437–476.Google Scholar | DOI

[48] Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T. and Nakayashiki, A., ‘Affine crystals and vertex models’, Internat. J. Modern Phys. A 7(supp01a) (1992), 449–484.Google Scholar | DOI

[49] Kashiwara, M., ‘Crystalizing the -analogue of universal enveloping algebras’, Comm. Math. Phys. 133(2) (1990), 249–260.Google Scholar | DOI

[50] Kashiwara, M., ‘On crystal bases of the -analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991), 465–516.Google Scholar | DOI

[51] Kashiwara, M., ‘On level-zero representation of quantized affine algebras’, Duke Math. J. 112(1) (2002), 117–175.Google Scholar | DOI

[52] Kawanaka, N., ‘On subfield symmetric spaces over a finite field’, Osaka J. Math. 28(4) (1991), 759–791.Google Scholar

[53] Kawanaka, N., ‘A -series identity involving Schur functions and related topics’, Osaka J. Math. 36(1) (1999), 157–176.Google Scholar

[54] Knuth, D., ‘Permutations, matrices, and generalized Young tableaux’, Pacific J. Math. 34(3) (1970), 709–727.Google Scholar | DOI

[55] Krajenbrink, A. and Le Doussal, P., ‘Replica Bethe Ansatz solution to the Kardar–Parisi–Zhang equation on the half-line’, SciPost Phys. 8 (2020), 35.Google Scholar | DOI

[56] Kuniba, A., Okado, M., Sakamoto, R., Takagi, T. and Yamada, Y., ‘Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection’, Nuclear Phys. B 740(3) (2006), 299–327.Google Scholar | DOI

[57] Langer, R., Schlosser, M. J. and Warnaar, S. O., ‘Theta functions, elliptic hypergeometric series, and Kawanaka’s Macdonald polynomial conjecture’, SIGMA 5 (2009), 055.Google Scholar

[58] Lenart, C. and Schilling, A., ‘Crystal energy functions via the charge in types A and C’, Math. Z. 273 (2013), 401–426.Google Scholar | DOI

[59] Logan, B. F. and Shepp, L. A., ‘A variational problem for random Young tableaux’, Adv. Math. 26(2) (1977), 206–222.Google Scholar | DOI

[60] Lothaire, M., Algebraic Combinatorics on Words, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 2002).Google Scholar | DOI

[61] Lusztig, G., ‘Canonical bases arising from quantized enveloping algebras’, J. Amer. Math. Soc. 3(2) (1990), 447–498.Google Scholar | DOI

[62] Macdonald, I. G., Symmetric Functions and Hall Polynomials, second edn. (Oxford Univ. Press, Oxford, 1995).Google Scholar

[63] Matveev, K. and Petrov, L., ‘ -randomized Robinson–Schensted–Knuth correspondences and random polymers’, Ann. Inst. Henri Poincaré D 4(1) (2017), 1–123.Google Scholar | DOI

[64] Naito, S. and Sagaki, D., ‘Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials’, Math. Z. 238 (2016), 937–978.Google Scholar | DOI

[65] Nakayashiki, A. and Yamada, Y., ‘Kostka polynomials and energy functions in solvable lattice models’, Selecta Math. (N.S.) 3 (1997), 547–599.Google Scholar | DOI

[66] O’Connell, N. and Pei, Y., ‘A q-weighted version of the Robinson–Schensted algorithm’, Electron. J. Probab. 18(95) (2013), 1–25.Google Scholar

[67] Okado, M., Schilling, A. and Shimozono, M., ‘Virtual crystals and fermionic formulas of type , , and ’, Represent. Theory 7 (2003), 101–163.Google Scholar | DOI

[68] Orr, D. and Petrov, L., ‘Stochastic higher spin six vertex model and -TASEPs’, Adv. Math. 317 (2017), 473–525.Google Scholar | DOI

[69] Pak, I., ‘Periodic permutations and the Robinson–Schensted correspondence’, unpublished note (2003). URL: https://www.math.ucla.edu/pak/papers/inf2.eps.Google Scholar

[70] Prähofer, M. and Spohn, H., ‘Scale invariance of the PNG droplet and the Airy process’, J. Stat. Phys. 108 (2002), 1071–1106.Google Scholar | DOI

[71] Rains, E. M. and Warnaar, S. O., Bounded Littlewood Identities, Mem. Amer. Math. Soc. (Amer. Math. Soc., Providence, RI, 2021).Google Scholar | DOI

[72] Robinson, G. De B., ‘On the representations of the symmetric group’, Amer. J. Math. 60(3) (1938), 745–760.Google Scholar | DOI

[73] Sagan, B. and Stanley, R., ‘Robinson–Schensted algorithms for skew tableaux’, J. Combin. Theory Ser. A 55(2) (1990), 161–193.Google Scholar | DOI

[74] Sagan, B. E., The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (Springer, New York, 2001).Google Scholar | DOI

[75] Sanderson, Y. B., ‘On the connection between Macdonald polynomials and Demazure characters’, J. Algebraic Combin. 11 (2000), 269–275.Google Scholar | DOI

[76] Schensted, C., ‘Longest increasing and decreasing subsequences’, Canad. J. Math. 13 (1961), 179–191.Google Scholar | DOI

[77] Schilling, A. and Tingley, P., ‘Demazure crystals, Kirillov–Reshetikhin crystals, and the energy function’, Electron. J. Combin. 19(P4) (2012), 42.Google Scholar | DOI

[78] Schützenberger, M. P., ‘La correspondance de Robinson’, in Combinatoire et Représentation du Groupe Symétrique, Lecture Notes in Math., Vol. 59 (Springer, Berlin, Heidelberg, 1977), 59–113.Google Scholar | DOI

[79] Shi, J.-Y., ‘The generalized Robinson–Schensted algorithm on the affine Weyl group of type ’, J. Algebra 139(2) (1991), 364–394.Google Scholar

[80] Shimozono, M., ‘Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties’, J. Algebraic Combin. 15 (2002), 151–187.Google Scholar | DOI

[81] Shimozono, M., ‘Crystals for dummies’, unpublished note (2005). URL: https://www.aimath.org/WWN/kostka/crysdumb.eps.Google Scholar

[82] Stanley, R., Enumerative Combinatorics vol. 2 (Cambridge Univ. Press, Cambridge, 2001). With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.Google Scholar

[83] Takahashi, D., ‘On some soliton systems defined by using boxes and balls’, in Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA ’93), Hawaii (1993), 555–558. URL: https://hakotama.jp/laboratory/works/public/93t-nolta.pdf.Google Scholar

[84] Takahashi, D. and Satsuma, J., ‘A soliton cellular automaton’, J. Phys. Soc. Japan 59(10) (1990), 3514–3519.Google Scholar | DOI

[85] Tokihiro, T., Nagai, A. and Satsuma, J., ‘Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization’, Inverse Problems 15(6) (1999), 1639.Google Scholar | DOI

[86] Van Leeuwen, M., ‘Double crystals of binary and integral matrices’, Electron. J. Combin. 13 (2006), R86.Google Scholar | DOI

[87] Vershik, A. M. and Kerov, S. V., ‘Asymptotics of the Plancherel measure of the symmetric group and the limiting form of young tableaux’, Doklady AN SSSR 233(6) (1977), 1024–1027. English translation: Soviet Math. Doklady (1977), 527–531.Google Scholar

[88] Viennot, G., ‘Une forme geometrique de la correspondance de Robinson–Schensted’, in Combinatoire et Représentation du Groupe Symétrique (Springer, Berlin–Heidelberg, 1977), 29–58.Google Scholar | DOI

[89] Viennot, G., ‘Growth diagrams and edge local rules’, In L. Ferrari and M. Vamvakari (Eds.), Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combinatorial Structures, GASCom 2018, Athens, Greece, June 18-20, CEUR Workshop Proceedings, Vol. 2113 (2018), 202–211.Google Scholar

[90] Vuletic, M., ‘A generalization of MacMahon’s formula’, Trans. Amer. Math. Soc. 361(5) (2009), 2789–2804.Google Scholar | DOI

[91] Warnaar, S. O., ‘Rogers–Szegö polynomials and Hall–Littlewood symmetric functions’, J. Algebra 303(2) (2006), 810–830. Computational Algebra.Google Scholar | DOI

Cité par Sources :