Interpolation for Brill–Noether curves
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we determine the number of general points through which a Brill–Noether curve of fixed degree and genus in any projective space can be passed.
@article{10_1017_fmp_2023_22,
     author = {Eric Larson and Isabel Vogt},
     title = {Interpolation for {Brill{\textendash}Noether} curves},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.22/}
}
TY  - JOUR
AU  - Eric Larson
AU  - Isabel Vogt
TI  - Interpolation for Brill–Noether curves
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.22/
DO  - 10.1017/fmp.2023.22
LA  - en
ID  - 10_1017_fmp_2023_22
ER  - 
%0 Journal Article
%A Eric Larson
%A Isabel Vogt
%T Interpolation for Brill–Noether curves
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.22/
%R 10.1017/fmp.2023.22
%G en
%F 10_1017_fmp_2023_22
Eric Larson; Isabel Vogt. Interpolation for Brill–Noether curves. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.22

[1] Aprodu, M., Farkas, G. and Ortega, A., ‘Restricted Lazarsfeld–Mukai bundles and canonical curves’, in Development of Moduli Theory – Kyoto 2013, Adv. Stud. Pure Math., 69 (Math. Soc. Japan, Tokyo, 2016), 303–322.10.2969/aspm/06910303Google Scholar | DOI

[2] Atanasov, A., Larson, E. and Yang, D., ‘Interpolation for normal bundles of general curves’, Mem. Amer. Math. Soc. 257(1234) (2019), v+105.Google Scholar

[3] Atanasov, A. V., ‘Interpolation and vector bundles on curves’, Ph.D. thesis, Harvard University (2015).Google Scholar

[4] Ballico, E., ‘On the Hilbert function of general unions of curves in projective spaces’, Preprint, 2020, .Google Scholar | arXiv

[5] Birkhoff, G. D., ‘General mean value and remainder theorems with applications to mechanical differentiation and quadrature’, Trans. Amer. Math. Soc. 7(1) (1906), 107–136.Google Scholar | DOI

[6] Cauchy, A., Cours d’analyse (L'Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi. Rue Serpente no 7, Paris, France, 1821).Google Scholar

[7] Chen, D., Farkas, G. and Morrison, I., ‘Effective divisors on moduli spaces of curves and abelian varieties’, in A Celebration of Algebraic Geometry, Clay Math. Proc., 18 (Amer. Math. Soc., Providence, RI, 2013), 131–169.Google Scholar

[8] Coskun, I., ‘Degenerations of surface scrolls and the Gromov–Witten invariants of Grassmannians’, J. Algebraic Geom. 15(2) (2006), 223–284.Google Scholar | DOI

[9] Coskun, I., Larson, E. and Vogt, I., ‘Stability of normal bundles of space curves’, Algebra Number Theory 16(4) (2022), 919–953.Google Scholar | DOI

[10] Coskun, I., Larson, E. and Vogt, I., ‘The normal bundle of a general canonical curve is semistable’, J. Eur. Math. Soc. (JEMS) (2022).Google Scholar

[11] Cramer, G., Introduction à l’analyse des lignes courbes algébriques (Chez les Frères Cramer & Cl. Philibert, A Genève, 1750).Google Scholar

[12] Eisenbud, D. and Harris, J., ‘Irreducibility and monodromy of some families of linear series’, Ann. Sci. École Norm. Sup. (4) 20(1) (1987), 65–87.10.24033/asens.1524Google Scholar | DOI

[13] Ellingsrud, G. and Hirschowitz, A., ‘Sur le fibré normal des courbes gauches’, C. R. Acad. Sci. Paris Sér. I Math. 299(7) (1984), 245–248.Google Scholar

[14] Python Software Foundation, ‘Python language reference, version 3.7’. URL: https://www.python.org.Google Scholar

[15] Fulton, W. and Lazarsfeld, R., ‘On the connectedness of degeneracy loci and special divisors’, Acta Math. 146(3–4) (1981), 271–283.10.1007/BF02392466Google Scholar | DOI

[16] Gieseker, D., ‘Stable curves and special divisors: Petri’s conjecture’, Invent. Math. 66(2) (1982), 251–275.Google Scholar | DOI

[17] Griffiths, P. and Harris, J., ‘On the variety of special linear systems on a general algebraic curve’, Duke Math. J. 47(1) (1980), 233–272.Google Scholar | DOI

[18] Hartshorne, R. and Hirschowitz, A., ‘Smoothing algebraic space curves’, in Algebraic Geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., 1124 (Springer, Berlin, 1985), 98–131.Google Scholar | DOI

[19] Hermite, C., ‘Sur la formule d’interpolation de Lagrange’, J. Reine Angew. Math. 84 (1878), 70–79.Google Scholar | DOI

[20] Kadets, B., ‘Sectional monodromy groups of projective curves’, J. Lond. Math. Soc. (2) 103(1) (2021), 314–335.Google Scholar | DOI

[21] Lagrange, J., ‘Leçons élémentaires sur les mathématiques données a l’école normale’, in Séances Des Écoles Normales, vol. 3 (École normale supérieure, Paris, France, 1795).Google Scholar

[22] Larson, E., ‘The maximal rank conjecture’, Preprint, 2018, .Google Scholar | arXiv

[23] Larson, E. and Vogt, I., ‘Interpolation for Brill–Noether curves in ’, Eur. J. Math. 7(1) (2021), 235–271.Google Scholar | DOI

[24] Perrin, D., ‘Courbes passant par points généraux de ’, Mém. Soc. Math. France (N.S.) 28 (1987), 138.Google Scholar

[25] Ran, Z., ‘Normal bundles of rational curves in projective spaces’, Asian J. Math. 11(4) (2007), 567–608.Google Scholar | DOI

[26] Reed, I. S. and Solomon, G., ‘Polynomial codes over certain finite fields’, J. Soc. Indust. Appl. Math. 8 (1960), 300–304.10.1137/0108018Google Scholar | DOI

[27] Sacchiero, G., ‘Normal bundles of rational curves in projective space’, Ann. Univ. Ferrara Sez. VII (N.S.) 26 (1980), 33–40 (1981).Google Scholar | DOI

[28] Shamir, A., ‘How to share a secret’, Comm. ACM 22(11) (1979), 612–613.10.1145/359168.359176Google Scholar | DOI

[29] Stevens, J., ‘On the number of points determining a canonical curve’, Nederl. Akad. Wetensch. Indag. Math. 51(4) (1989), 485–494.Google Scholar | DOI

[30] Stevens, J., ‘On the computation of versal deformations’, J. Math. Sci. 82 (1996), 3713–3720 (Translated from: Itogi Nauki, Vol. 20, Topologiya-3, 1994).Google Scholar | DOI

[31] Vogt, I., ‘Interpolation for Brill–Noether space curves’, Manuscripta Math. 156(1–2) (2018), 137–147.Google Scholar | DOI

[32] Waring, E., ‘Problems concerning interpolations’, Philos. Trans. Roy. Soc. A 69 (1779), 59–67.Google Scholar

Cité par Sources :