Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_22,
     author = {Eric Larson and Isabel Vogt},
     title = {Interpolation for {Brill{\textendash}Noether} curves},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.22/}
}
                      
                      
                    Eric Larson; Isabel Vogt. Interpolation for Brill–Noether curves. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.22
[1] , and , ‘Restricted Lazarsfeld–Mukai bundles and canonical curves’, in Development of Moduli Theory – Kyoto 2013, Adv. Stud. Pure Math., 69 (Math. Soc. Japan, Tokyo, 2016), 303–322.10.2969/aspm/06910303Google Scholar | DOI
[2] , and , ‘Interpolation for normal bundles of general curves’, Mem. Amer. Math. Soc. 257(1234) (2019), v+105.Google Scholar
[3] , ‘Interpolation and vector bundles on curves’, Ph.D. thesis, Harvard University (2015).Google Scholar
[4] , ‘On the Hilbert function of general unions of curves in projective spaces’, Preprint, 2020, .Google Scholar | arXiv
[5] , ‘General mean value and remainder theorems with applications to mechanical differentiation and quadrature’, Trans. Amer. Math. Soc. 7(1) (1906), 107–136.Google Scholar | DOI
[6] , Cours d’analyse (L'Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi. Rue Serpente no 7, Paris, France, 1821).Google Scholar
[7] , and , ‘Effective divisors on moduli spaces of curves and abelian varieties’, in A Celebration of Algebraic Geometry, Clay Math. Proc., 18 (Amer. Math. Soc., Providence, RI, 2013), 131–169.Google Scholar
[8] , ‘Degenerations of surface scrolls and the Gromov–Witten invariants of Grassmannians’, J. Algebraic Geom. 15(2) (2006), 223–284.Google Scholar | DOI
[9] , and , ‘Stability of normal bundles of space curves’, Algebra Number Theory 16(4) (2022), 919–953.Google Scholar | DOI
[10] , and , ‘The normal bundle of a general canonical curve is semistable’, J. Eur. Math. Soc. (JEMS) (2022).Google Scholar
[11] , Introduction à l’analyse des lignes courbes algébriques (Chez les Frères Cramer & Cl. Philibert, A Genève, 1750).Google Scholar
[12] and , ‘Irreducibility and monodromy of some families of linear series’, Ann. Sci. École Norm. Sup. (4) 20(1) (1987), 65–87.10.24033/asens.1524Google Scholar | DOI
[13] and , ‘Sur le fibré normal des courbes gauches’, C. R. Acad. Sci. Paris Sér. I Math. 299(7) (1984), 245–248.Google Scholar
[14] Python Software Foundation, ‘Python language reference, version 3.7’. URL: https://www.python.org.Google Scholar
[15] and , ‘On the connectedness of degeneracy loci and special divisors’, Acta Math. 146(3–4) (1981), 271–283.10.1007/BF02392466Google Scholar | DOI
[16] , ‘Stable curves and special divisors: Petri’s conjecture’, Invent. Math. 66(2) (1982), 251–275.Google Scholar | DOI
[17] and , ‘On the variety of special linear systems on a general algebraic curve’, Duke Math. J. 47(1) (1980), 233–272.Google Scholar | DOI
[18] and , ‘Smoothing algebraic space curves’, in Algebraic Geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., 1124 (Springer, Berlin, 1985), 98–131.Google Scholar | DOI
[19] , ‘Sur la formule d’interpolation de Lagrange’, J. Reine Angew. Math. 84 (1878), 70–79.Google Scholar | DOI
[20] , ‘Sectional monodromy groups of projective curves’, J. Lond. Math. Soc. (2) 103(1) (2021), 314–335.Google Scholar | DOI
[21] , ‘Leçons élémentaires sur les mathématiques données a l’école normale’, in Séances Des Écoles Normales, vol. 3 (École normale supérieure, Paris, France, 1795).Google Scholar
[22] , ‘The maximal rank conjecture’, Preprint, 2018, .Google Scholar | arXiv
[23] and , ‘Interpolation for Brill–Noether curves in ’, Eur. J. Math. 7(1) (2021), 235–271.Google Scholar | DOI
[24] , ‘Courbes passant par points généraux de ’, Mém. Soc. Math. France (N.S.) 28 (1987), 138.Google Scholar
[25] , ‘Normal bundles of rational curves in projective spaces’, Asian J. Math. 11(4) (2007), 567–608.Google Scholar | DOI
[26] and , ‘Polynomial codes over certain finite fields’, J. Soc. Indust. Appl. Math. 8 (1960), 300–304.10.1137/0108018Google Scholar | DOI
[27] , ‘Normal bundles of rational curves in projective space’, Ann. Univ. Ferrara Sez. VII (N.S.) 26 (1980), 33–40 (1981).Google Scholar | DOI
[28] , ‘How to share a secret’, Comm. ACM 22(11) (1979), 612–613.10.1145/359168.359176Google Scholar | DOI
[29] , ‘On the number of points determining a canonical curve’, Nederl. Akad. Wetensch. Indag. Math. 51(4) (1989), 485–494.Google Scholar | DOI
[30] , ‘On the computation of versal deformations’, J. Math. Sci. 82 (1996), 3713–3720 (Translated from: Itogi Nauki, Vol. 20, Topologiya-3, 1994).Google Scholar | DOI
[31] , ‘Interpolation for Brill–Noether space curves’, Manuscripta Math. 156(1–2) (2018), 137–147.Google Scholar | DOI
[32] , ‘Problems concerning interpolations’, Philos. Trans. Roy. Soc. A 69 (1779), 59–67.Google Scholar
Cité par Sources :
