Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_21,
     author = {Jean Bourgain and Mariusz Mirek and Elias M. Stein and James Wright},
     title = {On a multi-parameter variant of the {Bellow{\textendash}Furstenberg} problem},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.21/}
}
                      
                      
                    TY - JOUR AU - Jean Bourgain AU - Mariusz Mirek AU - Elias M. Stein AU - James Wright TI - On a multi-parameter variant of the Bellow–Furstenberg problem JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.21/ DO - 10.1017/fmp.2023.21 LA - en ID - 10_1017_fmp_2023_21 ER -
%0 Journal Article %A Jean Bourgain %A Mariusz Mirek %A Elias M. Stein %A James Wright %T On a multi-parameter variant of the Bellow–Furstenberg problem %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.21/ %R 10.1017/fmp.2023.21 %G en %F 10_1017_fmp_2023_21
Jean Bourgain; Mariusz Mirek; Elias M. Stein; James Wright. On a multi-parameter variant of the Bellow–Furstenberg problem. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.21
[1] , and , Trigonometric Sums in Number Theory and Analysis (De Gruyter Expositions in Mathematics) (Walter De Gruyter, 2004).Google Scholar
[2] , and , ‘Distribution of fractional parts of polynomials of several variable’, Mat. Zametki 25(1) (1979), 3–14 Google Scholar
[3] , ‘A proof of Walsh’s convergence theorem using couplings’, Int. Math. Res. Not. IMRN 15 (2015), 6661–6674.Google Scholar | DOI
[4] , ‘On the norm convergence of non-conventional ergodic averages’, Ergodic Theory Dynam. Systems 30 (2010), 321–338.Google Scholar | DOI
[5] , Measure Theory: Proceedings of the Conference Held at Oberwolfach,June 21–27, 1981 (Lecture Notes in Mathematics) vol. 541 (Springer-Verlag, Berlin, 1982). Section: Two problems submitted by A. Bellow, 429–431.Google Scholar | DOI
[6] , ‘Weakly mixing PET’, Ergodic Theory Dynam. Systems 7(3) (1987), 337–349.Google Scholar | DOI
[7] , ‘Ergodic Ramsey Theory – An Update’, in and (eds.) Ergodic Theory of -actions (London Math. Soc. Lecture Note Series) vol. 228 (1996), 1–61.Google Scholar
[8] , ‘Combinatorial and diophantine applications of ergodic theory’, in and (eds.) Handbook of Dynamical Systems vol. 1B (Elsevier, 2006), 745–841.Google Scholar
[9] and , ‘Polynomial extensions of van derWaerden’s and Szemerédi’s theorems’, J. Amer. Math. Soc. 9 (1996), 725–753.Google Scholar | DOI
[10] and , ‘A nilpotent Roth theorem’, Invent. Math. 147 (2002), 429–470.Google Scholar | DOI
[11] , ‘Proof of the ergodic theorem’, Proc. Natl. Acad. Sci. USA 17(12) (1931), 656–660.Google ScholarPubMed | DOI
[12] , ‘Über ein in der Theorie der säkularen Störungen vorkommendes Problem’, J. Reine Angew. Math. 135 (1909), 189–283.Google Scholar | DOI
[13] , ‘On the maximal ergodic theorem for certain subsets of the integers’, Israel J. Math. 61 (1988), 39–72.Google Scholar | DOI
[14] , ‘On the pointwise ergodic theorem on for arithmetic sets’, Israel J. Math. 61 (1988), 73–84.Google Scholar | DOI
[15] , ‘Pointwise ergodic theorems for arithmetic sets’, Inst. Hautes Etudes Sci. Publ. Math. 69 (1989), 5–45. With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein.Google Scholar | DOI
[16] , ‘Double recurrence and almost sure convergence’, J. Reine Angew. Math. 404 (1990), 140–161.Google Scholar
[17] , and , ‘Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three’, Ann. Math. 184(2) (2016), 633–682.Google Scholar | DOI
[18] and , ‘Divergent square averages’, Ann. Math. 171(3) (2010), 1479–1530.Google Scholar | DOI
[19] , ‘Ergodic theory and translation invariant operators’, Proc. Natl. Acad. Sci. USA 59 (1968), 349–353.Google ScholarPubMed | DOI
[20] , and , ‘Multidimensional van der Corput and sublevel set estimates’, J. Amer. Math. Soc. 12(4) (1999), 3981–1015.Google Scholar | DOI
[21] , and , ‘Ergodic averages of commuting transformations with distinct degree polynomial iterates’, Proc. London. Math. Soc. 102(5) (2011), 801–842.Google Scholar | DOI
[22] and , ‘Maximal and singular integral operators via Fourier transform estimates’, Invent. Math. 84 (1984), 541–562.Google Scholar | DOI
[23] , ‘An individual ergodic theorem for non-commutative transformations’, Acta Sci. Math. (Szeged) 14 (1951), 1–4.Google Scholar
[24] , Problems Session, Conference on Ergodic Theory and Applications University of New Hampshire, Durham, NH, June 1982.Google Scholar
[25] , ‘Some open problems on multiple ergodic averages’, Bull. Hellenic Math. Soc. 60 (2016), 41–90.Google Scholar
[26] and , ‘Polynomial averages converge to the product of integrals’, Israel J. Math. 148 (2005), 267–276.Google Scholar | DOI
[27] , ‘Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions’, J. Anal. Math. 31 (1977), 204–256.Google Scholar | DOI
[28] , ‘Nonconventional ergodic averages’, in The Legacy of John von Neumann (Amer. Math. Soc., Providence, RI, 1990), 43–56.Google Scholar | DOI
[29] , Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, 1981).Google Scholar | DOI
[30] and , ‘A mean ergodic theorem for ’, in Convergence in Ergodic Theory and Probability (de Gruyter, Berlin, 1996), 193–227.Google Scholar | DOI
[31] and , ‘Non-conventional ergodic averages and nilmanifolds’, Ann. Math. 161 (2005), 397–488.Google Scholar | DOI
[32] and , ‘Convergence of polynomial ergodic averages’, Israel J. Math. 149 (2005), 1–19.Google Scholar | DOI
[33] , , and , ‘Discrete Radon transforms and applications to ergodic theory’, Acta Math. 198 (2007), 231–298.Google Scholar | DOI
[34] and , ‘ boundedness of discrete singular Radon transforms’, J. Amer. Math. Soc. 19(2) (2005), 357–383.Google Scholar | DOI
[35] and , Analytic Number Theory vol. 53 (Amer. Math. Soc. Colloquium Publications, Providence RI, 2004).Google Scholar
[36] , , and , ‘Polynomial averages and pointwise ergodic theorems on nilpotent groups’, Invent. Math. 231 (2023), 1023–1140.Google Scholar | DOI
[37] , and , ‘Oscillation inequalities for rectangles’, Proc. Amer. Math. Soc. 129(5) (2001), 1349–1358.Google Scholar | DOI
[38] , and , ‘Strong variational and jump inequalities in harmonic analysis’, Trans. Amer. Math. Soc. 360(12) (2008), 6711–6742.Google Scholar | DOI
[39] , Basic Analytic Number Theory (Springer-Verlag, Berlin, 1993). Translated from the second (1983) Russian edition and with a preface by .Google Scholar | DOI
[40] , ‘Zur Birkhoff’s Lb’sung des Ergodensproblems’, Math. Ann. 107 (1933), 485–488.Google Scholar | DOI
[41] , and , ‘Pointwise ergodic theorems for non-conventional bilinear polynomial averages’, Ann. Math. 195(3) (2022), 997–1109.Google Scholar | DOI
[42] , ‘Universally -bad arithmetic sequences’, J. Anal. Math. 113(1) (2011), 241–263.Google Scholar | DOI
[43] , ‘Convergence of multiple ergodic averages along polynomials of several variables’, Israel J. Math. 146 (2005), 303–315.Google Scholar | DOI
[44] , and , ‘Discrete analogues in harmonic analysis: spherical averages’, Ann. Math. 155 (2002), 189–208.Google Scholar | DOI
[45] , and , ‘Maximal operators associated to discrete subgroups of nilpotent Lie groups’, J. Anal. Math. 101(1) (2007), 257–312.Google Scholar | DOI
[46] , ‘-estimates for discrete Radon transform: square function estimates’, Anal. PDE 11(3) (2018), 583–608.Google Scholar | DOI
[47] , and , ‘Some remarks on oscillation inequalities’, Ergodic Theory and Dynam. Systems, online version 29 (November 2022), 1–30.Google Scholar
[48] , and , ‘-estimates for discrete operators of Radon types I: maximal functions and vector-valued estimates’, J. Funct. Anal. 277(8) (2019), 2471–2521.Google Scholar | DOI
[49] , and , ‘-estimates for discrete operators of Radon type: variational estimates’, Invent. Math. 209(3) (2017), 665–748.Google Scholar | DOI
[50] , and , ‘Jump inequalities via real interpolation’, Math. Ann. 376(1–2) (2020), 797–819.Google Scholar | DOI
[51] , and . ‘A bootstrapping approach to jump inequalities and their applications’, Analysis & PDE 13(2) (2020), 527–558.Google Scholar | DOI
[52] , and , ‘Jump inequalities for translation-invariant operators of Radon type on ’, Advances in Mathematics 365(107065) (2020), 57.Google Scholar | DOI
[53] , and , ‘Oscillation inequalities in ergodic theory and anaysis; one parameter and multi-parameter perspectives’, Rev. Mat. Iberoam. 38(7) (2022), 2249–2284.Google Scholar | DOI
[54] and , ‘Discrete maximal functions in higher dimensions and applications to ergodic theory’, Amer. J. Math. 138(6) (2016), 1495–1532.Google Scholar | DOI
[55] , ‘On superorthogonality’, J. Geom. Anal. 31 (2021), 7096–7183.Google Scholar | DOI
[56] , ‘Sur la valeur asymptotique d’une certaine somm’, Bull. Intl. Acad. Polonaise des Sci. et des Lettres (Cracovie) series A (1910), 9–11.Google Scholar
[57] , Harmonic Analysis (Princeton University Press, 1993).Google Scholar
[58] and ’ ‘Discrete analogues in harmonic analysis I: estimates for singular Radon transforms’, Amer. J. Math. 121 (1999), 1291–1336.Google Scholar | DOI
[59] , ‘On sets of integers containing no elements in arithmetic progression’, Acta Arith. 27 (1975), 199–245.Google Scholar | DOI
[60] , ‘Equidistribution for multidimensional polynomial phases’, available at Terence Tao’s blog, 06 August 2015: terrytao.wordpress.com/2015/08/06/equidistribution-for-multidimensional-polynomial-phases/.Google Scholar
[61] , ‘Norm convergence of multiple ergodic averages for commuting transformations’, Ergodic Theory Dynam. Systems 28 (2008), 657–688.Google Scholar | DOI
[62] , ‘The Ionescu–Wainger multiplier theorem and the adeles’, Mathematika 63(3) (2021), 557–737.Google Scholar
[63] , The Method of Trigonometrical Sums in the Theory of Numbers (Interscience Publishers, New York, 1954).Google Scholar
[64] , ‘Proof of the quasi-ergodic hypothesis’, Proc. Natl. Acad. Sci. USA 18 (1932), 70–82.Google Scholar | DOI
[65] , ‘Norm convergence of nilpotent ergodic averages’, Ann. Math. 175(3) (2012), 1667–1688.Google Scholar | DOI
[66] , ‘Über die Gibbs’sce Erscheinung und verwandte Konvergenzphenomene’, Rendiconti del Circolo Matematico di Palermo 330 (1910), 377–407.Google Scholar | DOI
[67] , ‘Über die Gleichverteilung von Zahlen mod. Eins’, Math. Ann. 7 (1916), 313–352.Google Scholar | DOI
[68] , ‘Nested efficient congruencing and relatives of Vinogradov’s mean value theorem’, Proc. London Math. Soc . (3) 118(4) (2019), 942–1016.Google Scholar | DOI
[69] , ‘The cubic case of the main conjecture in Vinogradov’s mean value theorem’, Adv. Math. 294 (2016), 532–561.Google Scholar | DOI
[70] , ‘Vinogradov’s mean value theorem via efficient congruencing’, Ann. Math. 175(3) (2012), 1575–1627.Google Scholar | DOI
[71] , ‘Universal characteristic factors and Furstenberg averages’, J. Amer. Math. Soc. 20 (2007), 53–97.Google Scholar | DOI
[72] , ‘An individual ergodic theorem for non-commutative transformations’, Acta Sci. Math. (Szeged) 14 (1951), 103–110.Google Scholar
[73] , Trigonometric Series third edn. (Cambridge University Press, 2003).Google Scholar | DOI
Cité par Sources :
