Hodge classes and the Jacquet–Langlands correspondence
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the Jacquet–Langlands correspondence for cohomological automorphic forms on quaternionic Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups, we also show that the image of this Hodge class in $\ell $-adic cohomology is Galois invariant for all $\ell $.
@article{10_1017_fmp_2023_20,
     author = {Atsushi Ichino and Kartik Prasanna},
     title = {Hodge classes and the {Jacquet{\textendash}Langlands} correspondence},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.20/}
}
TY  - JOUR
AU  - Atsushi Ichino
AU  - Kartik Prasanna
TI  - Hodge classes and the Jacquet–Langlands correspondence
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.20/
DO  - 10.1017/fmp.2023.20
LA  - en
ID  - 10_1017_fmp_2023_20
ER  - 
%0 Journal Article
%A Atsushi Ichino
%A Kartik Prasanna
%T Hodge classes and the Jacquet–Langlands correspondence
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.20/
%R 10.1017/fmp.2023.20
%G en
%F 10_1017_fmp_2023_20
Atsushi Ichino; Kartik Prasanna. Hodge classes and the Jacquet–Langlands correspondence. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.20

[1] Adams, J., ‘The theta correspondence over ’, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12 (World Sci. Publ., Hackensack, NJ, 2007), 1–39.Google Scholar

[2] Adams, J. and Johnson, J. F., ‘Endoscopic groups and packets of nontempered representations’, Compositio Math. 64(3) (1987), 271–309.Google Scholar

[3] Arancibia, N., Mœglin, C. and Renard, D., ‘Paquets d’Arthur des groupes classiques et unitaires’, Ann. Fac. Sci. Toulouse Math. (6) 27(5) (2018), no. 5, 1023–1105.Google Scholar | DOI

[4] Arthur, J., The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups, American Mathematical Society Colloquium Publications, 61 (American Mathematical Society, Providence, RI, 2013).Google Scholar

[5] Bergeron, N., Millson, J. and Mœglin, C., ‘The Hodge conjecture and arithmetic quotients of complex balls’, Acta Math. 216(1) (2016), 1–125.Google Scholar | DOI

[6] Bergeron, N., Millson, J. and Mœglin, C., ‘Hodge type theorems for arithmetic manifolds associated to orthogonal groups’, Int. Math. Res. Not. IMRN (15) (2017), 4495–4624.Google Scholar

[7] Blasius, D. and Rogawski, J. D., ‘Zeta functions of Shimura varieties’, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 2, (Amer. Math. Soc., Providence, RI, 1994), 525–571.Google Scholar | DOI

[8] Bloch, S. and Kato, K., ‘-functions and Tamagawa numbers of motives’, The Grothendieck Festschrift, Vol. I, Progr. Math., 86 (Birkhäuser Boston, Boston, MA, 1990), 333–400.Google Scholar

[9] Borel, A., ‘Automorphic -functions’, Automorphic Forms, Representations and -Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII (Amer. Math. Soc., Providence, RI, 1979), 27–61.Google Scholar

[10] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, second edn., Mathematical Surveys and Monographs, 67 (American Mathematical Society, Providence, RI, 2000).Google Scholar | DOI

[11] Brylinski, J.-L. and Labesse, J.-P., ‘Cohomologie d’intersection et fonctions L de certaines variétés de Shimura’, Ann. Sci. École Norm. Sup. (4) 17(3) (1984), 361–412. French.Google Scholar | DOI

[12] Buzzard, K. and Gee, T., ‘The conjectural connections between automorphic representations and Galois representations’, Automorphic Forms and Galois Representations. Vol. 1, London Math. Soc. Lecture Note Ser., 414 (Cambridge Univ. Press, Cambridge, 2014), 135–187.Google Scholar | DOI

[13] Carayol, H., ‘Sur les représentations -adiques associées aux formes modulaires de Hilbert’, Ann. Sci. École Norm. Sup. (4) 19(3) (1986), 409–468. French.Google Scholar | DOI

[14] Deligne, P., ‘Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques’, Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos, Pure Math., XXXIII (Amer. Math. Soc., Providence, RI, 1979), 247–289. French.Google Scholar | DOI

[15] Deligne, P., Milne, J. S., Ogus, A. and Shih, K.-Y., Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, 900 (Springer-Verlag, Berlin-New York, 1982).Google Scholar | DOI

[16] Faltings, G., ‘On the cohomology of locally symmetric Hermitian spaces’, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 35th Year (Paris, 1982), Lecture Notes in Math., 1029 (Springer, Berlin, 1983), 55–98.Google Scholar

[17] Faltings, G., ‘Endlichkeitssätze für abelsche Varietäten über Zahlkörpern’, Invent. Math. 73(3) (1983), 349–366. German.Google Scholar | DOI

[18] Fulton, W. and Harris, J., Representation Theory. A First Course, Graduate Texts in Mathematics, 129 Readings in Mathematics. (Springer-Verlag, New York, 1991), xvi+551.Google Scholar

[19] Funke, J. and Millson, J., ‘Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms’, Amer. J. Math. 128(4) (2006), 899–948.Google Scholar | DOI

[20] Gan, W. T., Gross, B. H. and Prasad, D., ‘Symplectic local root numbers, central critical values, and restriction problems in the representation theory of classical groups’, Sur les conjectures de Gross et Prasad. I. Astérisque (346) (2012), 1–109.Google Scholar

[21] Gan, W. T., Qiu, Y. and Takeda, S., ‘The regularized Siegel–Weil formula (the second term identity) and the Rallis inner product formula’, Invent. Math. 198(3) (2014), 739–831.Google Scholar | DOI

[22] Gan, W. T. and Sun, B., ‘The Howe duality conjecture: quaternionic case’, in Representation Theory, Number Theory, and Invariant Theory, Progr. Math., 323 (Birkhäuser/Springer, Cham, 2017), 175–192.Google Scholar | DOI

[23] Gan, W. T. and Takeda, S., ‘A proof of the Howe duality conjecture’, J. Amer. Math. Soc. 29(2) (2016), 473–493.Google Scholar | DOI

[24] Gan, W. T. and Tantono, W., ‘The local Langlands conjecture for , II: The case of inner forms’, Amer. J. Math. 136(3) (2014), 761–805.Google Scholar | DOI

[25] Harris, M., ‘Hodge–de Rham structures and periods of automorphic forms’, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 2, (Amer. Math. Soc., Providence, RI, 1994), 573–624.Google Scholar

[26] Harris, M. and Kudla, S. S., ‘Arithmetic automorphic forms for the nonholomorphic discrete series of ’, Duke Math. J. 66(1) (1992), 59–121.Google Scholar | DOI

[27] Harris, M., Kudla, S. S. and Sweet, W. J., ‘Theta dichotomy for unitary groups’, J. Amer. Math. Soc. 9(4) (1996), 941–1004.Google Scholar | DOI

[28] Howe, R., ‘Transcending classical invariant theory’, J. Amer. Math. Soc. 2(3) (1989), 535–552.Google Scholar | DOI

[29] Ichino, A., ‘On the Siegel–Weil formula for unitary groups’, Math. Z. 255(4) (2007), 721–729.Google Scholar | DOI

[30] Ichino, A. and Prasanna, K., Periods of Quaternionic Shimura Varieties. I, Contemporary Mathematics, 762 (American Mathematical Society, Providence, RI, 2021).Google Scholar | DOI

[31] Ichino, A. and Prasanna, K., ‘Periods of quaternionic Shimura varieties. II’, In preparation.Google Scholar

[32] Johnson, J. F., ‘Stable base change of certain derived functor modules’, Math. Ann. 287(3) (1990), 467–493.Google Scholar | DOI

[33] Kakuhama, H., ‘On the local factors of irreducible representations of quaternionic unitary groups’, Manuscripta Math. 163(1–2) (2020), 57–86.Google Scholar | DOI

[34] Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., ‘Endoscopic classification of representations: inner forms of unitary groups’, Preprint, 2014, .Google Scholar | arXiv

[35] Kisin, M., Shin, S. W. and Zhu, Y., ‘The stable trace formula for Shimura varieties of abelian type’, Preprint, 2021, .Google Scholar | arXiv

[36] Knapp, A. W. and Vogan, D. A. Jr., Cohomological Induction and Unitary Representations, Princeton Mathematical Series, 45 (Princeton University Press, Princeton, NJ, 1995).Google Scholar | DOI

[37] Kottwitz, R. E., ‘Shimura varieties and -adic representations’, in Automorphic Forms, Shimura Varieties, and -Functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., 10 (Academic Press, Boston, 1990), 161–209.Google Scholar

[38] Kottwitz, R. E., ‘Points on some Shimura varieties over finite fields’, J. Amer. Math. Soc. 5(2) (1992), 373–444.Google Scholar | DOI

[39] Kottwitz, R. E., ‘On the -adic representations associated to some simple Shimura varieties’, Invent. Math. 108(3) (1992), 653–665.Google Scholar | DOI

[40] Kudla, S. S., ‘Splitting metaplectic covers of dual reductive pairs’, Israel J. Math. 87(1–3) (1994), 361–401.Google Scholar | DOI

[41] Kudla, S. S. and Millson, J. J., ‘The theta correspondence and harmonic forms. I’, Math. Ann. 274(3) (1986), 353–378.Google Scholar | DOI

[42] Kudla, S. S. and Millson, J. J., ‘Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables’, Inst. Hautes Études Sci. Publ. Math. (71) (1990), 121–172.Google Scholar | DOI

[43] Kudla, S. S. and Rallis, S., Poles of Eisenstein Series and -Functions. Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3 (Weizmann, Jerusalem, 1990), 81–110.Google Scholar

[44] Kudla, S. S. and Rallis, S., ‘A regularized Siegel–Weil formula: The first term identity’, Ann. of Math.(2) 140(1) (1994), 1–80.Google Scholar | DOI

[45] Langlands, R. P., R. P. Modular forms and -adic representations’, in Modular Functions of One Variable , II. (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., Vol. 349, (Springer, Berlin, 1973), 361–500.Google Scholar | DOI

[46] Lapid, E. M. and Rallis, S., ‘On the local factors of representations of classical groups’, Automorphic Representations, -Functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ., 11 (de Gruyter, Berlin, 2005), 309–359.Google Scholar

[47] Li, J.-S., ‘Singular unitary representations of classical groups’, Invent. Math. 97(2) (1989), 237–255.Google Scholar | DOI

[48] Li, J.-S., ‘Theta lifting for unitary representations with nonzero cohomology’, Duke Math. J. 61(3) (1990), 913–937.Google Scholar | DOI

[49] Li, J.-S., ‘Nonvanishing theorems for the cohomology of certain arithmetic quotients’, J. Reine Angew. Math. 428 (1992), 177–217.Google Scholar

[50] Loke, H. Y., ‘Howe quotients of unitary characters and unitary lowest weight modules. With an appendix by Soo Teck Lee’, Represent. Theory 10 (2006), 21–47.Google Scholar | DOI

[51] Mœglin, C., Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps -adique, Lecture Notes in Mathematics, 1291 (Springer-Verlag, Berlin, 1987).Google Scholar

[52] Mok, C. P., ‘Endoscopic classification of representations of quasi-split unitary groups’, Mem. Amer. Math. Soc. 235(1108) (2015).Google Scholar

[53] Murty, V. K. and Ramakrishnan, D., ‘Period relations and the Tate conjecture for Hilbert modular surfaces’, Invent. Math. 89(2) (1987), 319–345.Google Scholar | DOI

[54] Nekovář, J., ‘Eichler–Shimura relations and semisimplicity of étale cohomology of quaternionic Shimura varieties’, Ann. Sci. Éc. Norm. Supér. (4) 51(5) (2018), 1179–1252.Google Scholar | DOI

[55] Oda, T., Periods of Hilbert Modular Surfaces, Progress in Mathematics, 19 (Birkhäuser, Boston, 1982).Google Scholar | DOI

[56] Oda, T., ‘Hodge structures of Shimura varieties attached to the unit groups of quaternion algebras. Galois Groups and Their Representations (Nagoya, 1981), Adv. Stud. Pure Math., 2 (North-Holland, Amsterdam, 1983), 15–36.Google Scholar

[57] Piatetski-Shapiro, I. I. Rallis, S., ‘L-functions for the classical groups’, in Explicit Constructions of Automorphic -Functions, Lecture Notes in Mathematics, 1254 (Springer-Verlag, 1987), 1–52.Google Scholar

[58] Ranga Rao, R., ‘On some explicit formulas in the theory of Weil representation’, Pacific J. Math. 157(2) (1993), 335–371.Google Scholar | DOI

[59] Reimann, H., The Semi-Simple Zeta Function of Quaternionic Shimura Varieties, Lecture Notes in Mathematics, 1657 (Springer-Verlag, Berlin, 1997).Google Scholar | DOI

[60] Repka, J., ‘Tensor products of unitary representations of ’, Amer. J. Math. 100(4) (1978), 747–774.Google Scholar | DOI

[61] Roberts, B., ‘The theta correspondence for similitudes’, Israel J. Math. 94 (1996), 285–317.Google Scholar | DOI

[62] Shin, S. W. and Templier, N., ‘On fields of rationality for automorphic representations’, Compos. Math. 150(12) (2014), 2003–2053.Google Scholar | DOI

[63] Sun, B. and Zhu, C.-B., ‘Conservation relations for local theta correspondence’, J. Amer. Math. Soc. 28(4) (2015), 939–983.Google Scholar | DOI

[64] Tits, J., ‘Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque’, J. Reine Angew. Math. 247 (1971), 196–220. French.Google Scholar

[65] Vogan, D. A. and Zuckerman, G. J., ‘Unitary representations with nonzero cohomology’, Compositio Math. 53(1) (1984), 51–90.Google Scholar

[66] Waldspurger, J.-L., ‘Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2)’, Compositio Math. 54(2) (1985), 121–171. French.Google Scholar

[67] Waldspurger, J.-L., ‘Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie’, Compositio Math. 54(2) (1985), 173–242.Google Scholar

[68] Waldspurger, J.-L., Démonstration d’une conjecture de dualité de Howe dans le cas -adique, . Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc., 2 (Weizmann, Jerusalem, 1990), 267–324.Google Scholar

[69] Yamana, S., ‘Degenerate principal series representations for quaternionic unitary groupsIsrael J. Math. 185 (2011), 77–124.Google Scholar | DOI

[70] Yamana, S., ‘On the Siegel-Weil formula for quaternionic unitary groups’, Amer. J. Math. 135(5) (2013), 1383–1432.Google Scholar | DOI

[71] Yamana, S., ‘L-functions and theta correspondence for classical groups’, Invent. Math. 196(3) (2014), 651–732.Google Scholar | DOI

[72] Zucker, S., ‘Locally homogeneous variations of Hodge structure’, Enseign. Math. (2) 27(3–4) (1981), 243–276 (1982).Google Scholar

[73] Théorie des topos et cohomologie étale des schémas. Tome 3. (French) Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, vol. 305 (Springer-Verlag, Berlin-New York, 1973).Google Scholar

Cité par Sources :