Sharp smoothing properties of averages over curves
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove sharp smoothing properties of the averaging operator defined by convolution with a measure on a smooth nondegenerate curve $\gamma $ in $\mathbb R^d$, $d\ge 3$. Despite the simple geometric structure of such curves, the sharp smoothing estimates have remained largely unknown except for those in low dimensions. Devising a novel inductive strategy, we obtain the optimal $L^p$ Sobolev regularity estimates, which settle the conjecture raised by Beltran–Guo–Hickman–Seeger [1]. Besides, we show the sharp local smoothing estimates on a range of p for every $d\ge 3$. As a result, we establish, for the first time, nontrivial $L^p$ boundedness of the maximal average over dilations of $\gamma $ for $d\ge 4$.
@article{10_1017_fmp_2023_2,
     author = {Hyerim Ko and Sanghyuk Lee and Sewook Oh},
     title = {Sharp smoothing properties of averages over curves},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.2/}
}
TY  - JOUR
AU  - Hyerim Ko
AU  - Sanghyuk Lee
AU  - Sewook Oh
TI  - Sharp smoothing properties of averages over curves
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.2/
DO  - 10.1017/fmp.2023.2
LA  - en
ID  - 10_1017_fmp_2023_2
ER  - 
%0 Journal Article
%A Hyerim Ko
%A Sanghyuk Lee
%A Sewook Oh
%T Sharp smoothing properties of averages over curves
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.2/
%R 10.1017/fmp.2023.2
%G en
%F 10_1017_fmp_2023_2
Hyerim Ko; Sanghyuk Lee; Sewook Oh. Sharp smoothing properties of averages over curves. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.2

[1] Beltran, D., Guo, S., Hickman, J. and Seeger, A., ‘Sharp bounds for the helical maximal function,’ Amer. J. of Math. (to appear), .Google Scholar | arXiv

[2] Beltran, D., Guo, S., Hickman, J. and Seeger, A., ‘Sobolev improving for averages over curves in ’, Adv. Math. 393 (2021) 108089.Google Scholar | DOI

[3] Bourgain, J., ‘Averages in the plane over convex curves and maximal operators’, J. Analyse. Math. 47 (1986), 69–85.Google Scholar | DOI

[4] Bourgain, J. and Demeter, C., ‘The proof of the decoupling conjecture’, Ann. of Math. 182 (2015), 351–389.Google Scholar | DOI

[5] Bourgain, J., Demeter, C. and Guth, L., ‘Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three’, Ann. of Math. 184 (2016), 633–682.Google Scholar | DOI

[6] Christ, M., Failure of an endpoint estimate for integrals along curves, Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), Stud. Adv. Math. (CRC, Boca Raton, FL, 1995), 163–168.Google Scholar

[7] Christ, M., ‘Convolution, curvature, and combinatorics. A case study’, Int. Math. Res. Not. 19 (1998), 1033–1048.Google Scholar | DOI

[8] Christ, M., Nagel, A., Stein, E. M. and Wainger, S., ‘Singular and maximal Radon transforms: analysis and geometry’, Ann. of Math. 150(2) (1999), 489–577.Google Scholar | DOI

[9] Constantin, P. and Saut, J.-C., ‘Local smoothing properties of dispersive equations’, J. Amer. Math. Soc. 1 (1988), 413–439.Google Scholar | DOI

[10] Guo, S., Li, Z., Yung, P.-L. and Zorin-Kranich, P., ‘A short proof of decoupling for the moment curve’, Amer. J. Math. 143 (2021), 1983–1998.Google Scholar | DOI

[11] Guth, L., Wang, H. and Zhang, R., ‘A sharp square function estimate for the cone in ’, Ann. of Math. 192 (2020), 551–581.Google Scholar | DOI

[12] Ham, S. and Lee, S., ‘Restriction estimates for space curves with respect to general measure’, Adv. Math. 254 (2014), 251–279.Google Scholar | DOI

[13] Ikromov, I., Kempe, M. and Müller, D., ‘Estimates for maximal functions associated with hypersurfaces in and related problems of harmonic analysis’, Acta Math. 204 (2010), 151–271.Google Scholar | DOI

[14] Ko, H., Lee, S. and Oh, S., ‘Maximal estimates for averages over space curves’, Invent. Math. 228 (2022), 991–1035.Google Scholar | DOI

[15] Lee, S., ‘Endpoint estimates for the circular maximal function’, Proc. Amer. Math. Soc. 131 (2003), 1433–1442.Google Scholar | DOI

[16] Lee, S. and Vargas, A., ‘On the cone multiplier in ’, J. Funct. Anal. 263 (2012), 925–940.Google Scholar | DOI

[17] Marstrand, J. M., ‘Packing circles in the plane’, Proc. London Math. Soc. 55 (1987), 37–58.Google Scholar | DOI

[18] Mitsis, T., ‘On a problem related to sphere and circle packing’, J. London Math. Soc. 60 (1999), 501–516.Google Scholar | DOI

[19] Mockenhaupt, G., Seeger, A. and Sogge, C. D., ‘Wave front sets, local smoothing and Bourgain’s circular maximal theorem’, Ann. of Math. 136 (1992), 207–218.Google Scholar | DOI

[20] Oberlin, D., Smith, H. and Sogge, C. D., ‘Averages over curves with torsion’, Math. Res. Lett. 5 (1998), 535–539.Google Scholar | DOI

[21] Phong, D. H. and Stein, E. M., ‘Radon transforms and torsion’, Internat. Math. Res. Notices 1991(4) (1991), 49–60.Google Scholar | DOI

[22] Pramanik, M., Rogers, K. M. and Seeger, A., ‘A Calderón–Zygmund estimate with applications to generalized radon transforms and Fourier integral operators’, Stud. Math. 202 (2011), 1–15.Google Scholar | DOI

[23] Pramanik, M. and Seeger, A., ‘ Sobolev regularity of a restricted X-ray transform in ’, in Harmonic Analysis and Its Applications (Yokohama Publ., Yokohama 2006), 47–64.Google Scholar

[24] Pramanik, M. and Seeger, A., ‘ regularity of averages over curves and bounds for associated maximal operators’, Amer. J. Math. 129 (2007), 61–103.Google Scholar | DOI

[25] Pramanik, M. and Seeger, A., ‘-Sobolev estimates for a class of integral operators with folding canonical relations’, J. Geom. Anal. 31 (2021), 6725–6765.Google Scholar | DOI

[26] Schlag, W., ‘A generalization of Bourgain’s circular maximal theorem’, J. Amer. Math. Soc. 10 (1997), 103–122.Google Scholar | DOI

[27] Schlag, W. and Sogge, C. D., ‘Local smoothing estimates related to the circular maximal theorem’, Math. Res. Let. 4 (1997), 1–15.Google Scholar | DOI

[28] Seeger, A. and Wright, J., Problems on Averages and Lacunary Maximal Functions, Marcinkiewicz Centenary Volume, Banach Center Publ., vol. 95, (Polish Acad. Sci. Inst. Math., Warsaw, 2011), 235–250.Google Scholar

[29] Sjölin, P., ‘Regularity of solutions to the Schrödinger equation’, Duke Math. J. 55 (1987), 699–715.Google Scholar | DOI

[30] Sogge, C. D., ‘Propagation of singularities and maximal functions in the plane’, Invent. Math. 104 (1991), 349–376.Google Scholar | DOI

[31] Stein, E. M., ‘Maximal functions: spherical means’, Proc. Nat. Acad. Sci. USA 73 (1976), 2174–2175.Google ScholarPubMed | DOI

[32] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Univ. Press, Princeton, NJ, 1993).Google Scholar

[33] Stein, E. M. and Wainger, S., ‘Problems in harmonic analysis related to curvature’, Bull. Amer. Math. Soc. 84 (1978), 1239–1295.Google Scholar | DOI

[34] Stovall, B., ‘Endpoint bounds for a generalized Radon transform’, J. Lond. Math. Soc. 80 (2009), 357–374.Google Scholar | DOI

[35] Tao, T. and Vargas, A., ‘A bilinear approach to cone multipliers. II. Applications’, Geom. Funct. Anal. 10 (2000), 216–258.Google Scholar | DOI

[36] Tao, T. and Wright, J., ‘improving bounds for averages along curves’, J. Amer. Math. Soc. 16 (2003), 605–638.Google Scholar | DOI

[37] Wolff, T., ‘A Kakeya type problem for circles’, Amer. J. Math. 119 (1997), 985–1026.Google Scholar | DOI

[38] Wolff, T., ‘Local smoothing type estimates on for large ’, Geom. Funct. Anal. 10 (2000), 1237–1288.Google Scholar | DOI

Cité par Sources :