Resolution of the Erdős–Sauer problem on regular subgraphs
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we completely resolve the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an n-vertex graph can have without containing a k-regular subgraph, for some fixed integer $k\geq 3$. We prove that any n-vertex graph with average degree at least $C_k\log \log n$ contains a k-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially improves an old result of Pyber, who showed that average degree at least $C_k\log n$ is enough.Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.
@article{10_1017_fmp_2023_19,
     author = {Oliver Janzer and Benny Sudakov},
     title = {Resolution of the {Erd\H{o}s{\textendash}Sauer} problem on regular subgraphs},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.19/}
}
TY  - JOUR
AU  - Oliver Janzer
AU  - Benny Sudakov
TI  - Resolution of the Erdős–Sauer problem on regular subgraphs
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.19/
DO  - 10.1017/fmp.2023.19
LA  - en
ID  - 10_1017_fmp_2023_19
ER  - 
%0 Journal Article
%A Oliver Janzer
%A Benny Sudakov
%T Resolution of the Erdős–Sauer problem on regular subgraphs
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.19/
%R 10.1017/fmp.2023.19
%G en
%F 10_1017_fmp_2023_19
Oliver Janzer; Benny Sudakov. Resolution of the Erdős–Sauer problem on regular subgraphs. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.19

[1] Alon, N., ‘Problems and results in extremal combinatorics—II’, Discrete Mathematics 308(19) (2008), 4460–4472, 2008.Google Scholar | DOI

[2] Alon, N., ‘A note on degenerate and spectrally degenerate graphs’, Journal of Graph Theory 72(1) (2013), 1–6, 2013.Google Scholar | DOI

[3] Alon, N., Cohen, J. D., Dey, B., Griffiths, T., Musslick, S., Ozcimder, K., Reichman, D., Shinkar, I. and Wagner, T., ‘A graph-theoretic approach to multitasking’, Preprint, 2016, .Google Scholar | arXiv

[4] Alon, N., Friedland, S. and Kalai, G., ‘Every 4-regular graph plus an edge contains a 3-regular subgraph’, Journal of Combinatorial Theory, Series B 37 (1984), 92–93.Google Scholar | DOI

[5] Alon, N., Friedland, S. and Kalai, G., ‘Regular subgraphs of almost regular graphs’, Journal of Combinatorial Theory, Series B 37(1) (1984), 79–91.Google Scholar | DOI

[6] Alon, N., Reichman, D., Shinkar, I., Wagner, T., Musslick, S., Cohen, J. D., Griffiths, T., Dey, B. and Ozcimder, K., ‘A graph-theoretic approach to multitasking’, Advances in Neural Information Processing Systems 30 (2017).Google Scholar

[7] Bollobás, B., Extremal Graph Theory (Academic Press, 1978).Google Scholar

[8] Bollobás, B., Kim, J. H. and Verstraëte, J., ‘Regular subgraphs of random graphs’, Random Structures & Algorithms 29(1) (2006), 1–13.Google Scholar | DOI

[9] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, vol. 290 (Macmillan, London, 1976).Google Scholar | DOI

[10] Bucić, M., Kwan, M., Pokrovskiy, A., Sudakov, B., Tran, T. and Wagner, A. Z., ‘Nearly-linear monotone paths in edge-ordered graphs’, Israel Journal of Mathematics 238(2) (2020), 663–685.Google Scholar | DOI

[11] Dellamonica, D., Haxell, P., Łuczak, T., Mubayi, D., Nagle, B., Person, Y., Rödl, V., Schacht, M. and Verstraëte, J., ‘On even-degree subgraphs of linear hypergraphs’, Combinatorics, Probability and Computing 21(1–2) (2012), 113–127.Google Scholar | DOI

[12] Dellamonica, D. Jr and Rödl, V., ‘A note on Thomassen’s conjecture’, Journal of Combinatorial Theory, Series B 101(6) (2011), 509–515.Google Scholar | DOI

[13] Dvořák, Z. and Mohar, B., ‘Spectrally degenerate graphs: Hereditary case’, Journal of Combinatorial Theory, Series B 102(5) (2012), 1099–1109.Google Scholar | DOI

[14] Erdős, P., ‘Some recent progress on extremal problems in graph theory’, Congr. Numer. 14 (1975), 3–14.Google Scholar

[15] Erdős, P. and Simonovits, M., ‘Some extremal problems in graph theory’, in Combinatorial Theory and Its Applications, I (North Holland, Amsterdam, 1970), 377–390.Google Scholar

[16] Erdős, P., ‘On the combinatorial problems which I would most like to see solved’, Combinatorica 1(1) (1981), 25–42.Google Scholar | DOI

[17] Hall, P., ‘On representatives of subsets’, J. London Math. Soc. 10 (1935), 26–30.Google Scholar | DOI

[18] Han, J. and Kim, J., ‘Two-regular subgraphs of odd-uniform hypergraphs’, Journal of Combinatorial Theory, Series B 128 (2018), 175–191.Google Scholar | DOI

[19] Kim, J., ‘Regular subgraphs of uniform hypergraphs’, Journal of Combinatorial Theory, Series B 119 (2016), 214–236.Google Scholar | DOI

[20] Kim, J. and Kostochka, A. V., ‘Maximum hypergraphs without regular subgraphs’, Discuss. Math. Graph Theory 34(1) (2014), 151–166.Google Scholar | DOI

[21] Kühn, D. and Osthus, D., ‘Every graph of sufficiently large average degree contains a -free subgraph of large average degree’, Combinatorica 24(1) (2004), 155–162.Google Scholar | DOI

[22] Montgomery, R., Pokrovskiy, A. and Sudakov, B., ‘-free subgraphs with large average degree’, Israel Journal of Mathematics 246(1) (2021), 55–71.Google Scholar | DOI

[23] Mubayi, D. and Verstraëte, J., ‘Two-regular subgraphs of hypergraphs’, Journal of Combinatorial Theory, Series B 99(3) (2009), 643–655.Google Scholar | DOI

[24] Petersen, J., ‘Die theorie der regulären graphs’, Acta Mathematica 15(1) (1891), 193–220.Google Scholar | DOI

[25] Pyber, L., ‘Regular subgraphs of dense graphs’, Combinatorica 5(4) (1985), 347–349.Google Scholar | DOI

[26] Pyber, L., Rödl, V. and Szemerédi, E., ‘Dense graphs without 3-regular subgraphs. Journal of Combinatorial Theory, Series B 63(1) (1995), 41–54.Google Scholar | DOI

[27] Rödl, V. and Wysocka, B., ‘Note on regular subgraphs’, Journal of Graph Theory 24(2) (1997), 139–154.Google Scholar | DOI

[28] Thomassen, C., ‘Girth in graphs’, Journal of Combinatorial Theory, Series B 35(2) (1983), 129–141.Google Scholar | DOI

[29] Tutte, W. T., ‘The factorization of linear graphs’, Journal of the London Mathematical Society 1(2) (1947), 107–111.Google Scholar | DOI

[30] Tutte, W. T., ‘The factors of graphs’, Canadian Journal of Mathematics 4 (1952), 314–328.Google Scholar | DOI

Cité par Sources :