Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_18,
     author = {Gal Dor},
     title = {Exotic {Monoidal} {Structures} and {Abstractly} {Automorphic} {Representations} for $\mathrm {GL}(2)$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.18/}
}
                      
                      
                    TY  - JOUR
AU  - Gal Dor
TI  - Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.18/
DO  - 10.1017/fmp.2023.18
LA  - en
ID  - 10_1017_fmp_2023_18
ER  - 
                      
                      
                    Gal Dor. Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.18
                  
                [1] , ‘On a theorem of Hecke in number fields and function fields’, Inventiones mathematicae 2(3) (1967) 238–246.Google Scholar | DOI
[2] and , ‘Representations of the group where is a non-Archimedean local field’, Russian Math. Surveys 31(3) (1976) 1–68.Google Scholar | DOI
[3] and , ‘Induced representations of reductive -adic groups. I’, Annales scientifiques de l’École Normale Supérieure, Ser. 4 10(4) (1977), 441–472.Google Scholar | DOI
[4] , ‘Algebraic structures on automorphic L-functions’, PhD thesis, Tel-Aviv University, 2020.Google Scholar
[5] , ‘The Dixmier–Malliavin theorem and bornological vector spaces’, Preprint, 2020, .Google Scholar | arXiv
[6] , ‘Global parabolic induction and abstract automorphicity’, Preprint, 2021, .Google Scholar | arXiv
[7] , and , ‘Godement–Jacquet L-functions and full theta lifts’, Mathematische Zeitschrift 289(1) (2018), 593–604.Google Scholar | DOI
[8] and , Automorphic Representations and L-Functions for the General Linear Group, Cambridge Studies in Advanced Mathematics, vol. 1 (Cambridge University Press, Cambridge, 2011).Google Scholar
[9] and , ‘The categorical Weil representation’, Preprint, 2011, .Google Scholar | arXiv
[10] , ‘A note on functions’, in Proceedings of the International Congress of Mathematicians 1950, vol. 1, edited by , , and . (American Mathematical Society, 1952) 322.Google Scholar
[11] , ‘On the notion of an automorphic representation’, in Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. 33, part 1, (American Mathematical Society, 1979), 203–207.Google Scholar
[12] , ‘Spherical varieties and integral representations of L-functions’, Algebra and Number Theory 6(4) (2012), 611–667.Google Scholar | DOI
[13] , ‘Spherical varieties, functoriality, and quantization’, Preprint, 2021, .Google Scholar | arXiv
[14] , ‘Fourier analysis in number fields and Hecke’s zeta function’, PhD thesis, Princeton University, 1950.Google Scholar
[15] , ‘Homogeneous distributions on finite dimensional vector spaces’, Preprint, 2016, .Google Scholar | arXiv
Cité par Sources :
