Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for ${\mathrm {GL}}(2)$. We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of ${\mathrm {GL}}(2)$-modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for ${\mathrm {GL}}(2)$, and demonstrate its basic properties.This paper is a part of the author’s thesis [4].
@article{10_1017_fmp_2023_18,
     author = {Gal Dor},
     title = {Exotic {Monoidal} {Structures} and {Abstractly} {Automorphic} {Representations} for $\mathrm {GL}(2)$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.18/}
}
TY  - JOUR
AU  - Gal Dor
TI  - Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.18/
DO  - 10.1017/fmp.2023.18
LA  - en
ID  - 10_1017_fmp_2023_18
ER  - 
%0 Journal Article
%A Gal Dor
%T Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.18/
%R 10.1017/fmp.2023.18
%G en
%F 10_1017_fmp_2023_18
Gal Dor. Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.18

[1] Armitage, J. V., ‘On a theorem of Hecke in number fields and function fields’, Inventiones mathematicae 2(3) (1967) 238–246.Google Scholar | DOI

[2] Bernshtein, I. N. and Zelevinskii, A. V., ‘Representations of the group where is a non-Archimedean local field’, Russian Math. Surveys 31(3) (1976) 1–68.Google Scholar | DOI

[3] Bernstein, I. N. and Zelevinsky, Andrei, ‘Induced representations of reductive -adic groups. I’, Annales scientifiques de l’École Normale Supérieure, Ser. 4 10(4) (1977), 441–472.Google Scholar | DOI

[4] Dor, G., ‘Algebraic structures on automorphic L-functions’, PhD thesis, Tel-Aviv University, 2020.Google Scholar

[5] Dor, G., ‘The Dixmier–Malliavin theorem and bornological vector spaces’, Preprint, 2020, .Google Scholar | arXiv

[6] Dor, G., ‘Global parabolic induction and abstract automorphicity’, Preprint, 2021, .Google Scholar | arXiv

[7] Fang, Y., Sun, B. and Xue, H., ‘Godement–Jacquet L-functions and full theta lifts’, Mathematische Zeitschrift 289(1) (2018), 593–604.Google Scholar | DOI

[8] Goldfeld, D. and Hundley, J., Automorphic Representations and L-Functions for the General Linear Group, Cambridge Studies in Advanced Mathematics, vol. 1 (Cambridge University Press, Cambridge, 2011).Google Scholar

[9] Gurevich, S. and Hadani, R., ‘The categorical Weil representation’, Preprint, 2011, .Google Scholar | arXiv

[10] Iwasawa, K., ‘A note on functions’, in Proceedings of the International Congress of Mathematicians 1950, vol. 1, edited by Smith, P. A., Graves, L. M., Hille, E. and Zariski, O.. (American Mathematical Society, 1952) 322.Google Scholar

[11] Langlands, R. P., ‘On the notion of an automorphic representation’, in Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. 33, part 1, (American Mathematical Society, 1979), 203–207.Google Scholar

[12] Sakellaridis, Y., ‘Spherical varieties and integral representations of L-functions’, Algebra and Number Theory 6(4) (2012), 611–667.Google Scholar | DOI

[13] Sakellaridis, Y., ‘Spherical varieties, functoriality, and quantization’, Preprint, 2021, .Google Scholar | arXiv

[14] Tate, J., ‘Fourier analysis in number fields and Hecke’s zeta function’, PhD thesis, Princeton University, 1950.Google Scholar

[15] Xue, H., ‘Homogeneous distributions on finite dimensional vector spaces’, Preprint, 2016, .Google Scholar | arXiv

Cité par Sources :