Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

An n-vertex graph is called C-Ramsey if it has no clique or independent set of size $C\log _2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables.The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.
@article{10_1017_fmp_2023_17,
     author = {Matthew Kwan and Ashwin Sah and Lisa Sauermann and Mehtaab Sawhney},
     title = {Anticoncentration in {Ramsey} graphs and a proof of the {Erd\H{o}s{\textendash}McKay} conjecture},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.17/}
}
TY  - JOUR
AU  - Matthew Kwan
AU  - Ashwin Sah
AU  - Lisa Sauermann
AU  - Mehtaab Sawhney
TI  - Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.17/
DO  - 10.1017/fmp.2023.17
LA  - en
ID  - 10_1017_fmp_2023_17
ER  - 
%0 Journal Article
%A Matthew Kwan
%A Ashwin Sah
%A Lisa Sauermann
%A Mehtaab Sawhney
%T Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.17/
%R 10.1017/fmp.2023.17
%G en
%F 10_1017_fmp_2023_17
Matthew Kwan; Ashwin Sah; Lisa Sauermann; Mehtaab Sawhney. Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.17

[1] Abbott, H. L., ‘Lower bounds for some Ramsey numbers’, Discrete Math. 2 (1972), 289–293.10.1016/0012-365X(72)90009-XGoogle Scholar | DOI

[2] Alon, N. and Hajnal, A., ‘Ramsey graphs contain many distinct induced subgraphs’, Graphs Combin. 7 (1991), 1–6.10.1007/BF01789457Google Scholar | DOI

[3] Alon, N., Balogh, J., Kostochka, A. and Samotij, W., ‘Sizes of induced subgraphs of Ramsey graphs’, Combin. Probab. Comput. 18 (2009), 459–476.10.1017/S0963548309009869Google Scholar | DOI

[4] Alon, N. and Bollobás, B., ‘Graphs with a small number of distinct induced subgraphs’, Discrete Math. 75 (1989), 23–30. Graph theory and combinatorics (Cambridge, 1988).Google Scholar

[5] Alon, N., Gutin, G. and Krivelevich, M., ‘Algorithms with large domination ratio’, J. Algorithms 50 (2004), 118–131.10.1016/j.jalgor.2003.09.003Google Scholar | DOI

[6] Alon, N., Hefetz, D., Krivelevich, M. and Tyomkyn, M., ‘Edge-statistics on large graphs’, Combin. Probab. Comput. 29 (2020), 163–189.10.1017/S0963548319000294Google Scholar | DOI

[7] Alon, N. and Kostochka, A. V., ‘Induced subgraphs with distinct sizes’, Random Structures Algorithms 34 (2009), 45–53.10.1002/rsa.20250Google Scholar | DOI

[8] Alon, N., Krivelevich, M. and Sudakov, B., ‘Induced subgraphs of prescribed size’, J. Graph Theory 43 (2003), 239–251.10.1002/jgt.10117Google Scholar | DOI

[9] Alon, N. and Orlitsky, A., ‘Repeated communication and Ramsey graphs’, IEEE Trans. Inform. Theory 41 (1995), 1276–1289.10.1109/18.412676Google Scholar | DOI

[10] Alon, N. and Spencer, J. H., The Probabilistic Method, fourth edn., Wiley Series in Discrete Mathematics and Optimization (Wiley, John & Sons, Inc., Hoboken, NJ, 2016).Google Scholar

[11] Barak, B., Rao, A., Shaltiel, R. and Wigderson, Avi, ‘2-source dispersers for entropy, and Ramsey graphs beating the Frankl-Wilson construction’, Ann. of Math. (2) 176 (2012), 1483–1543.10.4007/annals.2012.176.3.3Google Scholar | DOI

[12] Berkowitz, R., ‘A local limit theorem for cliques in ’, Preprint, .Google Scholar | arXiv

[13] Berkowitz, R., ‘A quantitative local limit theorem for triangles in random graphs’, Preprint, .Google Scholar | arXiv

[14] Bhattacharya, B. B, Das, S., Mukherjee, S. and Mukherjee, S., ‘Asymptotic distribution of random quadratic forms’, Preprint, .Google Scholar | arXiv

[15] Bhattacharya, B. B., Mukherjee, S. and Mukherjee, S., ‘Asymptotic distribution of Bernoulli quadratic forms’, Ann. Appl. Probab. 31 (2021), 1548–1597.10.1214/20-AAP1626Google Scholar | DOI

[16] Bukh, B. and Sudakov, B., ‘Induced subgraphs of Ramsey graphs with many distinct degrees’, J. Combin. Theory Ser. B 97 (2007), 612–619.10.1016/j.jctb.2006.09.006Google Scholar | DOI

[17] Calkin, N., Frieze, A. and Mckay, B. D., ‘On subgraph sizes in random graphs’, Combin. Probab. Comput. 1 (1992), 123–134.10.1017/S0963548300000146Google Scholar | DOI

[18] Campos, M., Griffiths, S., Morris, R. and Sahasrabudhe, J., ‘An exponential improvement for diagonal Ramsey’, Preprint, .Google Scholar | arXiv

[19] Carbery, A. and Wright, J., ‘Distributional and norm inequalities for polynomials over convex bodies in ’, Math. Res. Lett. 8 (2001), 233–248.10.4310/MRL.2001.v8.n3.a1Google Scholar | DOI

[20] Chattopadhyay, E. and Zuckerman, D., ‘Explicit two-source extractors and resilient functions’, in STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (ACM, New York, 2016), 670–683.Google Scholar

[21] Chung, F. R. K., ‘A note on constructive methods for Ramsey numbers’, J. Graph Theory 5 (1981), 109–113.10.1002/jgt.3190050109Google Scholar | DOI

[22] Chung, F. R. K., ‘Open problems of Paul Erdős in graph theory’, J. Graph Theory 25 (1997), 3–36.10.1002/(SICI)1097-0118(199705)25:1<3::AID-JGT1>3.0.CO;2-RGoogle Scholar | DOI

[23] Chung, F. and Graham, R., Erdős on Graphs (A. K. Peters, Ltd., Wellesley, MA, 1998), His legacy of unsolved problems. Google Scholar

[24] Cohen, G., ‘Two-source dispersers for polylogarithmic entropy and improved Ramsey graphs’, in STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (ACM, New York, 2016), 278–284.Google Scholar

[25] Conlon, D. and Fox, J., ‘Graph removal lemmas’, in Surveys in Combinatorics 2013, London Math. Soc. Lecture Note Ser., vol. 409 (Cambridge Univ. Press, Cambridge, 2013), 1–49.Google Scholar

[26] Costello, K. P., ‘Bilinear and quadratic variants on the Littlewood-Offord problem’, Israel J. Math. 194 (2013), 359–394.10.1007/s11856-012-0082-4Google Scholar | DOI

[27] Costello, K. P., Tao, T. and Vu, V., ‘Random symmetric matrices are almost surely nonsingular’, Duke Math. J. 135 (2006), 395–413.10.1215/S0012-7094-06-13527-5Google Scholar | DOI

[28] De La Peña, V. H., ‘From dependence to complete independence: the decoupling approach’, in Fourth Symposium on Probability Theory and Stochastic Processes (Spanish) (Guanajuato, 1996), Aportaciones Mat. Notas Investigación, vol. 12 (Soc. Mat. Mexicana, México, 1996), 37–48.Google Scholar

[29] Di Benedetto, D., Solymosi, J. and White, E. P., ‘On the directions determined by a Cartesian product in an affine Galois plane’, Combinatorica 41 (2021), 755–763.10.1007/s00493-020-4516-zGoogle Scholar | DOI

[30] Durrett, R., Probability—Theory and Examples, fifth edn., Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49 (Cambridge University Press, Cambridge, 2019).10.1017/9781108591034Google Scholar | DOI

[31] Eckart, C. and Young, G., ‘The approximation of one matrix by another of lower rank’, Psychometrika 1 (1936), 211–218.10.1007/BF02288367Google Scholar | DOI

[32] Erdős, P., ‘On a lemma of Littlewood and Offord’, Bull. Amer. Math. Soc. 51 (1945), 898–902.10.1090/S0002-9904-1945-08454-7Google Scholar | DOI

[33] Erdős, P., ‘Some remarks on the theory of graphs’, Bull. Amer. Math. Soc. 53 (1947), 292–294.10.1090/S0002-9904-1947-08785-1Google Scholar | DOI

[34] Erdős, P., ‘Some of my favourite problems in various branches of combinatorics’, Combinatorics 92 (Catania, 1992), Matematiche (Catania) 47 (1992), 231–240 (1993).Google Scholar

[35] Erdős, P., ‘Some of my favourite problems in number theory, combinatorics, and geometry’, Resenhas 2 (1995), 165–186, Combinatorics Week (Portuguese) (São Paulo, 1994).Google Scholar

[36] Erdős, P., ‘Some recent problems and results in graph theory’, The Second Krakow Conference on Graph Theory (Zgorzelisko, 1994), Discrete Math. 164 (1997), 81–85.Google Scholar

[37] Erdős, P. and Hajnal, A., ‘On spanned subgraphs of graphs’, Contributions to Graph Theory and Its Applications (Internat. Colloq., Oberhof, 1977) (Tech. Hochschule Ilmenau, Ilmenau, 1977), 80–96.Google Scholar

[38] Erdős, P. and Szekeres, G., ‘A combinatorial problem in geometry’, Compositio Math. 2 (1935), 463–470.Google Scholar

[39] Erdős, P. and Szemerédi, A., ‘On a Ramsey type theorem’, Period. Math. Hungar. 2 (1972), 295–299.10.1007/BF02018669Google Scholar | DOI

[40] Fack, V. and Mckay, B. D., ‘A generalized switching method for combinatorial estimation’, Australas. J. Combin. 39 (2007), 141–154.Google Scholar

[41] Ferber, A., Jain, V. and Zhao, Y., ‘On the number of Hadamard matrices via anti-concentration’, Combin. Probab. Comput. 31 (2022), 455–477.10.1017/S0963548321000377Google Scholar | DOI

[42] Filmus, Y., Kindler, G., Mossel, E. and Wimmer, K., ‘Invariance principle on the slice’, ACM Trans. Comput. Theory 10 (2018), Art. 11, 37.Google Scholar

[43] Filmus, Y. and Mossel, E., ‘Harmonicity and invariance on slices of the Boolean cube’, Probab. Theory Related Fields 175 (2019), 721–782.10.1007/s00440-019-00900-wGoogle Scholar | DOI

[44] Fox, J., Kwan, M. and Sauermann, L., ‘Combinatorial anti-concentration inequalities, with applications’, Math. Proc. Cambridge Philos. Soc. 171 (2021), 227–248.10.1017/S0305004120000183Google Scholar | DOI

[45] Fox, J. and Sauermann, L., ‘’A completion of the proof of the edge-statistics conjecture, Adv. Comb. (2020), Paper No. 4, 52.Google Scholar

[46] Fox, J. and Sudakov, B., ‘Dependent random choice’, Random Structures Algorithms 38 (2011), 68–99.10.1002/rsa.20344Google Scholar | DOI

[47] Frankl, P. and Wilson, R. M., ‘Intersection theorems with geometric consequences’, Combinatorica 1 (1981), 357–368.10.1007/BF02579457Google Scholar | DOI

[48] Frankl, P., ‘A constructive lower bound for some Ramsey numbers’, Ars Combin. 3 (1977), 297–302.Google Scholar

[49] Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (Springer-Verlag, New York, 1991).10.1007/978-1-4612-3094-6Google Scholar | DOI

[50] Gilmer, Justin and Kopparty, Swastik, A local central limit theorem for triangles in a random graph , Random Structures Algorithms 48 (2016), 732–750.10.1002/rsa.20604Google Scholar | DOI

[51] Gnedenko, B. V., ‘On a local limit theorem of the theory of probability’, Uspekhi Matematicheskikh Nauk 3 (1948), 187–194.Google Scholar

[52] Gopalan, P., ‘Constructing Ramsey graphs from Boolean function representations’, Combinatorica 34 (2014), 173–206.10.1007/s00493-014-2367-1Google Scholar | DOI

[53] Greenhill, C., Isaev, M., Kwan, M. and Mckay, B. D., ‘The average number of spanning trees in sparse graphs with given degrees’, European J. Combin. 63 (2017), 6–25.10.1016/j.ejc.2017.02.003Google Scholar | DOI

[54] Guth, L., ‘Decoupling estimates in Fourier analysis’, Preprint, .Google Scholar | arXiv

[55] Halász, G., ‘Estimates for the concentration function of combinatorial number theory and probability’, Period. Math. Hungar. 8 (1977), 197–211.10.1007/BF02018403Google Scholar | DOI

[56] Hanson, B. and Petridis, G., ‘Refined estimates concerning sumsets contained in the roots of unity’, Proc. Lond. Math. Soc. (3) 122 (2021), 353–358.10.1112/plms.12322Google Scholar | DOI

[57] Hanson, D. L. and Wright, F. T., ‘A bound on tail probabilities for quadratic forms in independent random variables’, Ann. Math. Statist. 42 (1971), 1079–1083.10.1214/aoms/1177693335Google Scholar | DOI

[58] Hasheminezhad, M. and Mckay, B. D., ‘Combinatorial estimates by the switching method’, in Combinatorics and Graphs, Contemp. Math., vol. 531 (Amer. Math. Soc., Providence, RI, 2010), 209–221.10.1090/conm/531/10469Google Scholar | DOI

[59] Janson, S., Łuczak, T. and Rucinski, A., Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 2000).10.1002/9781118032718Google Scholar | DOI

[60] Jenssen, M., Keevash, P., Long, E. and Yepremyan, L., ‘Distinct degrees in induced subgraphs’, Proc. Amer. Math. Soc. 148 (2020), 3835–3846.10.1090/proc/15060Google Scholar | DOI

[61] Kane, D., ‘A structure theorem for poorly anticoncentrated polynomials of Gaussians and applications to the study of polynomial threshold functions’, Ann. Probab. 45 (2017), 1612–1679.10.1214/16-AOP1097Google Scholar | DOI

[62] Kim, J. H. and Vu, V. H., ‘Concentration of multivariate polynomials and its applications’, Combinatorica 20 (2000), 417–434.10.1007/s004930070014Google Scholar | DOI

[63] Krivelevich, M. and Sudakov, B., ‘Pseudo-random graphs’, in More Sets, Graphs and Numbers, Bolyai Soc. Math. Stud., vol. 15 (Springer, Berlin, 2006), 199–262.10.1007/978-3-540-32439-3_10Google Scholar | DOI

[64] Kuperberg, G., Lovett, S. and Peled, R., ‘Probabilistic existence of regular combinatorial structures’, Geom. Funct. Anal. 27 (2017), 919–972.10.1007/s00039-017-0416-9Google Scholar | DOI

[65] Kwan, M. and Sauermann, L., ‘An algebraic inverse theorem for the quadratic Littlewood-Offord problem, and an application to Ramsey graphs’, Discrete Anal. (2020), Paper No. 12, 34.Google Scholar

[66] Kwan, M. and Sudakov, B., ‘Proof of a conjecture on induced subgraphs of Ramsey graphs’, Trans. Amer. Math. Soc. 372 (2019), 5571–5594.10.1090/tran/7729Google Scholar | DOI

[67] Kwan, M. and Sudakov, B., ‘Ramsey graphs induce subgraphs of quadratically many sizes’, Int. Math. Res. Not. IMRN (2020), 1621–1638.10.1093/imrn/rny064Google Scholar | DOI

[68] Kwan, M., Sudakov, B. and Tran, T., ‘Anticoncentration for subgraph statistics’, J. Lond. Math. Soc. (2) 99 (2019), 757–777.10.1112/jlms.12192Google Scholar | DOI

[69] Lahiri, S. N., Chatterjee, A., and Maiti, T., ‘A sub-Gaussian Berry-Esseen theorem for the hypergeometric distribution’, Preprint, .Google Scholar | arXiv

[70] Lauria, M., Pudlák, P., Rödl, V. and Thapen, N., ‘The complexity of proving that a graph is Ramsey’, Combinatorica 37 (2017), 253–268.10.1007/s00493-015-3193-9Google Scholar | DOI

[71] Li, X., ‘Non-malleable extractors and non-malleable codes: partially optimal constructions’, in 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137 (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019), Art. No. 28, 49.Google Scholar

[72] Long, E. and Ploscaru, L., ‘A bipartite version of the Erdős-McKay conjecture’, Combin. Probab. Comput. 32 (2023), 465–477.10.1017/S0963548322000347Google Scholar | DOI

[73] Martinsson, A., Mousset, F., Noever, A. and Trujić, M., ‘The edge-statistics conjecture for ’, Israel J. Math. 234 (2019), 677–690.10.1007/s11856-019-1929-8Google Scholar | DOI

[74] Mossel, E., O’Donnell, R. and Oleszkiewicz, K., ‘Noise stability of functions with low influences: invariance and optimality’, Ann. of Math. (2) 171 (2010), 295–341.10.4007/annals.2010.171.295Google Scholar | DOI

[75] Nagy, Z., ‘A certain constructive estimate of the Ramsey number’, Mat. Lapok 23 (1972), 301–302 (1974).Google Scholar

[76] Narayanan, B., Sahasrabudhe, J. and Tomon, I., ‘Ramsey graphs induce subgraphs of many different sizes’, Combinatorica 39 (2019), 215–237.10.1007/s00493-017-3755-0Google Scholar | DOI

[77] Nguyen, H. H., ‘Inverse Littlewood–Offord problems and the singularity of random symmetric matrices’, Duke Math. J. 161 (2012), 545–586.10.1215/00127094-1548344Google Scholar | DOI

[78] Nguyen, H. and Vu, V., ‘Optimal inverse Littlewood–Offord theorems’, Adv. Math. 226 (2011), 5298–5319.10.1016/j.aim.2011.01.005Google Scholar | DOI

[79] Nguyen, H. H. and Vu, V. H., Small Ball Probability, Inverse Theorems, and Applications, Erdős Centennial, Bolyai Soc. Math. Stud., vol. 25 (János Bolyai Math. Soc., Budapest, 2013), 409–463.Google Scholar

[80] Nisan, N. and Wigderson, A., On Rank vs. Communication Complexity, 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994) (IEEE Comput. Soc. Press, Los Alamitos, CA, 1994), 831–836.Google Scholar

[81] O’Donnell, R., Analysis of Boolean Functions (Cambridge University Press, New York, 2014).10.1017/CBO9781139814782Google Scholar | DOI

[82] Patnaik, P. B., ‘The non-central - and -distribution and their applications’, Biometrika 36 (1949), 202–232.Google Scholar

[83] Petrov, V. V., Sums of Independent Random Variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82 (Springer-Verlag, New York-Heidelberg, 1975). Translated from the Russian by Brown, A. A..Google Scholar

[84] Prömel, H. J. and Rödl, V., ‘Non-Ramsey graphs are -universal’, J. Combin. Theory Ser. A 88 (1999), 379–384.10.1006/jcta.1999.2972Google Scholar | DOI

[85] Roos, B., ‘New inequalities for permanents and hafnians and some generalizations’, Preprint, .Google Scholar | arXiv

[86] Rudelson, M., ‘Recent developments in non-asymptotic theory of random matrices’, in Modern Aspects of Random Matrix Theory, Proc. Sympos. Appl. Math., vol. 72 (Amer. Math. Soc., Providence, RI, 2014), 83–120.10.1090/psapm/072/00616Google Scholar | DOI

[87] Rudelson, M. and Vershynin, R., ‘The Littlewood–Offord problem and invertibility of random matrices’, Adv. Math. 218 (2008), 600–633.10.1016/j.aim.2008.01.010Google Scholar | DOI

[88] Sah, A. and Sawhney, M., Local Limit Theorems for Subgraph Counts (2022), 950–1011.Google Scholar

[89] Shaltiel, R., ‘An introduction to randomness extractors’, in Automata, Languages and Programming, Part II, Lecture Notes in Comput. Sci., vol. 6756 (Springer, Heidelberg, 2011), 21–41.10.1007/978-3-642-22012-8_2Google Scholar | DOI

[90] Shelah, S., ‘Erdős and Rényi conjecture’, J. Combin. Theory Ser. A 82 (1998), 179–185.10.1006/jcta.1997.2845Google Scholar | DOI

[91] Tao, T. and Vu, V., ‘A sharp inverse Littlewood–Offord theorem’, Random Structures Algorithms 37 (2010), 525–539.10.1002/rsa.20327Google Scholar | DOI

[92] Tao, T. and Vu, V. H., ‘Inverse Littlewood–Offord theorems and the condition number of random discrete matrices’, Ann. of Math. (2) 169 (2009), 595–632.10.4007/annals.2009.169.595Google Scholar | DOI

[93] Tao, T. and Vu, V. H., Additive Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105 (Cambridge University Press, Cambridge, 2010).Google Scholar

[94] Varjú, P. P., ‘Random walks in Euclidean space, Ann. of Math. (2) (2015), 243–301.10.4007/annals.2015.181.1.4Google Scholar | DOI

[95] Vershynin, R., ‘Invertibility of symmetric random matrices’, Random Structures Algorithms 44 (2014), 135–182.10.1002/rsa.20429Google Scholar | DOI

Cité par Sources :