Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_16,
     author = {Jared Duker Lichtman},
     title = {A proof of the {Erd\H{o}s} primitive set conjecture},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.16/}
}
                      
                      
                    Jared Duker Lichtman. A proof of the Erdős primitive set conjecture. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.16
[1] , and , ‘ On prefix-free and suffix-free sequences of integers ’, Numbers, Information and Complexity (2000), 1–16.Google Scholar
[2] and , ‘Optimal primitive sets with restricted primes’, Integers 13 (2013), #A69.Google Scholar
[3] , and , ‘Sums over primitive sets with a fixed number of prime factors’, Math. Comp. 88 (2019), 3063–3077.Google Scholar | DOI
[4] , ‘On sequences of numbers not divisible by one another’, J. London Math. Soc. 10 (1935), 42–44.Google Scholar | DOI
[5] , ‘On the density of certain sequences of integers’, Math. Ann. 110 (1934), 336–341.Google Scholar | DOI
[6] , , and , ‘On the size of primitive sets in function fields’, Finite Fields and their Applications 64 (2020), 101658.Google Scholar | DOI
[7] , , and , ‘On the Erdős primitive set conjecture in function fields’, J. Number Theory 219 (2021), 412–444.Google Scholar | DOI
[8] , and , ‘A generalization of primitive sets and a conjecture of Erdős’, Discrete Analysis 16 (2020), 13 pp.Google Scholar
[9] , and , ‘On the critical exponent for k-primitive sets’, Combinatorica (2021).Google Scholar
[10] , ‘High precision computation of Hardy-Littlewood constants’, Preprint, 1991. https://www.math.u-bordeaux.fr/~hecohen/.Google Scholar
[11] and , ‘On sequences of positive integers’, Acta Arith. 2 (1937), 147–151.Google Scholar | DOI
[12] and , ‘On sequences of positive integers’, J. Indian Math. Soc. 15 (1951), 19–24.Google Scholar
[13] , ‘Note on sequences of integers no one of which is divisible by any other’, J. London Math. Soc. 10 (1935), 126–128.Google Scholar | DOI
[14] , ‘A generalization of a theorem of Besicovitch’, J. London Math. Soc. 11 (1936), 92–98.Google Scholar | DOI
[15] , ‘Problèmes et résultats en théorie des nombres’, Conférence de Paul Erdős à l’Université de Limoges, le 21 Octobre 1986 (rédigé par F. Morain). http://www.lix.polytechnique.fr/Labo/Francois.Morain/Introuvables/Morain88.pdf .Google Scholar
[16] , and , ‘On divisibility properties of sequences of integers’, Studia Sci. Math. Hungar. 1 (1966), 431–435.Google Scholar
[17] , and , ‘On the solvability of some equations in dense sequences of integers’, Soviet Math. Dokl. 8 (1967), 1160–1164.Google Scholar
[18] , and , ‘On divisibility properties of sequences of integers’, Colloq. Math. Soc. János Bolyai 2 (1968), 35–49.Google Scholar
[19] and , ‘Upper bound of for primitive sequences’, Proc. Amer. Math. Soc. 117 (1993), 891–895.Google Scholar | DOI
[20] and , Sequences (Oxford University Press, Oxford, 1966)Google Scholar
[21] , Sets of Multiples, Cambridge Tracts in Mathematics, vol. 118, (Cambridge University Press, Cambridge, 1996)Google Scholar | DOI
[22] and , Divisors, Cambridge Tracts in Mathematics, vol. 90 (Cambridge University Press, Cambridge, 1988)Google Scholar
[23] , ‘Note on translated sum on primitive sequences’, Notes on Number Theory and Discrete Mathematics 27 (2021), 39–43.Google Scholar | DOI
[24] , and , ‘Somme translatée sur des suites primitives et la conjecture d’Erdös’, C. R. Acad. Sci. Paris, Ser. I 357 (2019), 413–417.Google Scholar | DOI
[25] , ‘Almost primes and the Banks–Martin conjecture’, J. Number Theory 211(2020), 513–529.Google Scholar | DOI
[26] , ‘Translated sums of primitive sets’, Comptes Rendus. Mathématique 360 (2022), 409–414.Google Scholar | DOI
[27] and , ‘The Erdős conjecture for primitive sets’, Proc. Amer. Math. Soc. Ser. B 6 (2019), 1–14.Google Scholar | DOI
[28] , and , ‘Primes in prime number races’, Proc. Amer. Math. Soc. 147 (2019), 3743–3757.Google Scholar | DOI
[29] and , ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1962), 64–94.Google Scholar | DOI
[30] and , ‘Chebyshev’s bias’, Experiment. Math. 3 (1994), 173–197.Google Scholar | DOI
[31] , ‘On divisibility properties of sequences of integers’, in The Mathematics of Paul Erdős I, edited by and (Springer-Verlag, Berlin Heidelberg, 1997), 241–250.Google Scholar
[32] , ‘On divisibility properties of sequences of integers’, in The Mathematics of Paul Erdős I, second edn., edited by and (Springer-Verlag, Berlin Heidelberg, 2013), 221–232.Google Scholar | DOI
[33] , ‘On a problem of Erdős concerning primitive sequences’, Math. Comp. 60 (1993), 827–834.Google Scholar
Cité par Sources :
