A proof of the Erdős primitive set conjecture
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series $f(A) = \sum _{a\in A}1/(a \log a)$ is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative.As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
@article{10_1017_fmp_2023_16,
     author = {Jared Duker Lichtman},
     title = {A proof of the {Erd\H{o}s} primitive set conjecture},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.16/}
}
TY  - JOUR
AU  - Jared Duker Lichtman
TI  - A proof of the Erdős primitive set conjecture
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.16/
DO  - 10.1017/fmp.2023.16
LA  - en
ID  - 10_1017_fmp_2023_16
ER  - 
%0 Journal Article
%A Jared Duker Lichtman
%T A proof of the Erdős primitive set conjecture
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.16/
%R 10.1017/fmp.2023.16
%G en
%F 10_1017_fmp_2023_16
Jared Duker Lichtman. A proof of the Erdős primitive set conjecture. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.16

[1] Ahlswede, R., Khachatrian, L. H. and Sárközy, A., ‘ On prefix-free and suffix-free sequences of integers ’, Numbers, Information and Complexity (2000), 1–16.Google Scholar

[2] Banks, W. D. and Martin, G., ‘Optimal primitive sets with restricted primes’, Integers 13 (2013), #A69.Google Scholar

[3] Bayless, J., Kinlaw, P. and Klyve, D., ‘Sums over primitive sets with a fixed number of prime factors’, Math. Comp. 88 (2019), 3063–3077.Google Scholar | DOI

[4] Behrend, F., ‘On sequences of numbers not divisible by one another’, J. London Math. Soc. 10 (1935), 42–44.Google Scholar | DOI

[5] Besicovitch, A. S., ‘On the density of certain sequences of integers’, Math. Ann. 110 (1934), 336–341.Google Scholar | DOI

[6] Gómez-Colunga, A., Kavaler, C., Mcnew, N. and Zhu, M., ‘On the size of primitive sets in function fields’, Finite Fields and their Applications 64 (2020), 101658.Google Scholar | DOI

[7] Gómez-Colunga, A., Kavaler, C., Mcnew, N. and Zhu, M., ‘On the Erdős primitive set conjecture in function fields’, J. Number Theory 219 (2021), 412–444.Google Scholar | DOI

[8] Chan, T. H., Lichtman, J. D. and Pomerance, C., A generalization of primitive sets and a conjecture of Erdős’, Discrete Analysis 16 (2020), 13 pp.Google Scholar

[9] Chan, T. H., Lichtman, J. D. and Pomerance, C., ‘On the critical exponent for k-primitive sets’, Combinatorica (2021).Google Scholar

[10] Cohen, H., ‘High precision computation of Hardy-Littlewood constants’, Preprint, 1991. https://www.math.u-bordeaux.fr/~hecohen/.Google Scholar

[11] Davenport, H. and Erdős, P., ‘On sequences of positive integers’, Acta Arith. 2 (1937), 147–151.Google Scholar | DOI

[12] Davenport, H. and Erdős, P., ‘On sequences of positive integers’, J. Indian Math. Soc. 15 (1951), 19–24.Google Scholar

[13] Erdős, P., ‘Note on sequences of integers no one of which is divisible by any other’, J. London Math. Soc. 10 (1935), 126–128.Google Scholar | DOI

[14] Erdős, P., ‘A generalization of a theorem of Besicovitch’, J. London Math. Soc. 11 (1936), 92–98.Google Scholar | DOI

[15] Erdős, P., ‘Problèmes et résultats en théorie des nombres’, Conférence de Paul Erdős à l’Université de Limoges, le 21 Octobre 1986 (rédigé par F. Morain). http://www.lix.polytechnique.fr/Labo/Francois.Morain/Introuvables/Morain88.pdf .Google Scholar

[16] Erdős, P., Sárközy, A. and Szemerédi, E., ‘On divisibility properties of sequences of integers’, Studia Sci. Math. Hungar. 1 (1966), 431–435.Google Scholar

[17] Erdős, P., Sárközy, A. and Szemerédi, E., ‘On the solvability of some equations in dense sequences of integers’, Soviet Math. Dokl. 8 (1967), 1160–1164.Google Scholar

[18] Erdős, P., Sárközy, A. and Szemerédi, E., ‘On divisibility properties of sequences of integers’, Colloq. Math. Soc. János Bolyai 2 (1968), 35–49.Google Scholar

[19] Erdős, P. and Zhang, Z., ‘Upper bound of for primitive sequences’, Proc. Amer. Math. Soc. 117 (1993), 891–895.Google Scholar | DOI

[20] Halberstam, H. and Roth, K. F., Sequences (Oxford University Press, Oxford, 1966)Google Scholar

[21] Hall, R. R., Sets of Multiples, Cambridge Tracts in Mathematics, vol. 118, (Cambridge University Press, Cambridge, 1996)Google Scholar | DOI

[22] Hall, R. R. and Tenenbaum, G., Divisors, Cambridge Tracts in Mathematics, vol. 90 (Cambridge University Press, Cambridge, 1988)Google Scholar

[23] Laib, I., ‘Note on translated sum on primitive sequences’, Notes on Number Theory and Discrete Mathematics 27 (2021), 39–43.Google Scholar | DOI

[24] Laib, I., Derbal, A. and Mechik, R., ‘Somme translatée sur des suites primitives et la conjecture d’Erdös’, C. R. Acad. Sci. Paris, Ser. I 357 (2019), 413–417.Google Scholar | DOI

[25] Lichtman, J. D., ‘Almost primes and the Banks–Martin conjecture’, J. Number Theory 211(2020), 513–529.Google Scholar | DOI

[26] Lichtman, J. D., ‘Translated sums of primitive sets’, Comptes Rendus. Mathématique 360 (2022), 409–414.Google Scholar | DOI

[27] Lichtman, J. D. and Pomerance, C., ‘The Erdős conjecture for primitive sets’, Proc. Amer. Math. Soc. Ser. B 6 (2019), 1–14.Google Scholar | DOI

[28] Lichtman, J. D., Martin, G. and Pomerance, C., ‘Primes in prime number races’, Proc. Amer. Math. Soc. 147 (2019), 3743–3757.Google Scholar | DOI

[29] Rosser, J. B. and Schoenfeld, L., ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1962), 64–94.Google Scholar | DOI

[30] Rubinstein, M. and Sarnak, P., ‘Chebyshev’s bias’, Experiment. Math. 3 (1994), 173–197.Google Scholar | DOI

[31] Sárközy, A., ‘On divisibility properties of sequences of integers’, in The Mathematics of Paul Erdős I, edited by Graham, R. L. and Nesetril, J. (Springer-Verlag, Berlin Heidelberg, 1997), 241–250.Google Scholar

[32] Sárközy, A., ‘On divisibility properties of sequences of integers’, in The Mathematics of Paul Erdős I, second edn., edited by Graham, R. L. and Nesetril, J. (Springer-Verlag, Berlin Heidelberg, 2013), 221–232.Google Scholar | DOI

[33] Zhang, Z., ‘On a problem of Erdős concerning primitive sequences’, Math. Comp. 60 (1993), 827–834.Google Scholar

Cité par Sources :