Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_14,
author = {Austin Conner and Alicia Harper and J.M. Landsberg},
title = {New lower bounds for matrix multiplication and $\operatorname {det}_3$},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fmp.2023.14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.14/}
}
TY - JOUR
AU - Austin Conner
AU - Alicia Harper
AU - J.M. Landsberg
TI - New lower bounds for matrix multiplication and $\operatorname {det}_3$
JO - Forum of Mathematics, Pi
PY - 2023
VL - 11
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.14/
DO - 10.1017/fmp.2023.14
LA - en
ID - 10_1017_fmp_2023_14
ER -
%0 Journal Article
%A Austin Conner
%A Alicia Harper
%A J.M. Landsberg
%T New lower bounds for matrix multiplication and $\operatorname {det}_3$
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.14/
%R 10.1017/fmp.2023.14
%G en
%F 10_1017_fmp_2023_14
Austin Conner; Alicia Harper; J.M. Landsberg. New lower bounds for matrix multiplication and $\operatorname {det}_3$. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.14
[1] , Limits on the Universal Method for Matrix Multiplication, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137 (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019), Art. No. 12, 24. MR 3984617Google Scholar
[2] and , Further Limitations of the Known Approaches for Matrix Multiplication, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11–14, 2018 (Cambridge, MA, 2018), 25:1–25:15.Google Scholar
[3] and , Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication, 59th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2018 (IEEE Computer Soc., Los Alamitos, CA, 2018), 580–591. MR 3899623Google Scholar | DOI
[4] , and , Fast Matrix Multiplication: Limitations of the Coppersmith–Winograd Method (Extended Abstract), STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing (ACM, New York, 2015), 585–593. MR 3388238Google Scholar | DOI
[5] and , Computational Complexity. A Modern Approach. (Cambridge University Press, Cambridge, 2009). MR 2500087 (2010i,68001)Google Scholar | DOI
[6] , ‘Relations between exact and approximate bilinear algorithms’, Applications , Calcolo 17(1) (1980), 87–97. MR 605920 (83f,68043b)Google Scholar | DOI
[7] , and , ‘Approximate solutions for the bilinear form computational problem’, SIAM J. Comput. 9(4) (1980), 692–697. MR MR592760 (82a:68065)Google Scholar | DOI
[8] , Fast Matrix Multiplication, Graduate Surveys, no. 5, Theory of Computing Library, 2013.Google Scholar
[9] and , ‘A bound for the Waring rank of the determinant via syzygies’, Linear Algebra and its Applications 587 (2020), 195 – 214.Google Scholar | DOI
[10] , Lie Groups and Lie Algebras, Chapters 4–6, Elements of Mathematics (Berlin) (Springer-Verlag, Berlin, 2002). Translated from the 1968 French original by Andrew Pressley. MR MR1890629 (2003a:17001)Google Scholar | DOI
[11] and , ‘Apolarity, border rank, and multigraded Hilbert scheme’, Duke Math. J. 170(16) (2021), 3659–3702. MR 4332674Google Scholar | DOI
[12] , and , Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315 (Springer-Verlag, Berlin, 1997). With the collaboration of Thomas Lickteig. MR 99c:68002Google Scholar | DOI
[13] , and , Barriers for Fast Matrix Multiplication from Irreversibility, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137 (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019), Art. No. 26, 17. MR 3984631Google Scholar
[14] , , and , ‘Tensors with maximal symmetries’, Preprint, 2019, .Google Scholar | arXiv
[15] , , and , ‘Rank and border rank of Kronecker powers of tensors and Strassen’s laser method’, Comput. Complexity 31(1) (2022), Paper No. 1, 40. MR 4356227Google Scholar | DOI
[16] , and , ‘Bad and good news for Strassen’s laser method: Border rank of and strict submultiplicativity’, Foundations of Computational Mathematics (2022).Google Scholar | DOI
[17] , ‘On the nuclear norm and the singular value decomposition of tensors’, Found. Comput. Math. 16(3) (2016), 779–811. MR 3494510Google Scholar | DOI
[18] , , and , Barriers for Rank Methods in Arithmetic Complexity, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94 (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018), Art. No. 1, 19. MR 3761737Google Scholar
[19] , ‘Koszul–Young flattenings and symmetric border rank of the determinant’, J. Algebra 447 (2016), 664–676. MR 3427655Google Scholar | DOI
[20] and , Representation Theory , Graduate Texts in Mathematics, vol. 129 (Springer-Verlag, New York, 1991), A first course, Readings in Mathematics. MR 1153249 (93a,20069)Google Scholar
[21] , ‘Vector bundles give equations of cactus varieties’, Linear Algebra Appl. 521 (2017), 254–262. MR 3611482Google Scholar | DOI
[22] , ‘Multigraded apolarity’, Math. Nachr. 296(1) (2023), 286–313. MR 4553599Google Scholar | DOI
[23] , and , ‘Varieties of apolar subschemes of toric surfaces’, Ark. Mat. 56(1) (2018), 73–99. MR 3800460Google Scholar | DOI
[24] and , ‘Multigraded Hilbert schemes’, J. Algebraic Geom. 13(4) (2004), 725–769. MR 2073194Google Scholar | DOI
[25] , Deformation Theory, Graduate Texts in Mathematics, vol. 257 (Springer, New York, 2010). MR 2583634Google Scholar | DOI
[26] , Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9 (Springer-Verlag, New York, 1978), Second printing, revised. MR MR499562 (81b:17007)Google Scholar
[27] and , Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, vol. 1721 (Springer-Verlag, Berlin, 1999), Appendix C by Iarrobino and S. L. Kleiman. MR MR1735271 (2001d:14056)Google Scholar | DOI
[28] , Lie Groups Beyond an Introduction, second edn., Progress in Mathematics, vol. 140 (Birkhäuser Boston, Inc., Boston, MA, 2002). MR MR1920389 (2003c:22001)Google Scholar
[29] , ‘The border rank of the multiplication of matrices is seven’, J. Amer. Math. Soc. 19(2) (2006), 447–459. MR 2188132 (2006j:68034)Google Scholar | DOI
[30] , Tensors: Geometry and Applications, Graduate Studies in Mathematics, vol. 128 (American Mathematical Society, Providence, RI, 2012). MR 2865915Google Scholar
[31] , Geometry and complexity theory, Cambridge Studies in Advanced Mathematics, vol. 169 (Cambridge University Press, Cambridge, 2017). MR 3729273Google Scholar | DOI
[32] , Tensors: Asymptotic Geometry and Developments 2016–2018, CBMS Regional Conference Series in Mathematics, vol. 132 (AMS, 2019).Google Scholar | DOI
[33] and , ‘Abelian tensors’, J. Math. Pures Appl. (9) 108(3) (2017), 333–371. MR 3682743Google Scholar | DOI
[34] and , ‘On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry’, SIAM J. Appl. Algebra Geom. 1(1) (2017), 2–19. MR 3633766Google Scholar | DOI
[35] and , ‘Equations for secant varieties of Veronese and other varieties’, Ann. Mat. Pura Appl. (4) 192(4) (2013), 569–606. MR 3081636Google Scholar | DOI
[36] and , ‘ New lower bounds for the border rank of matrix multiplication’, Theory Comput. 11 (2015), 285–298. MR 3376667Google Scholar | DOI
[37] , ‘A note on border rank’, Inform. Process. Lett. 18(3) (1984), 173–178. MR 86c:68040Google Scholar | DOI
[38] , ‘The bilinear complexity and practical algorithms for matrix multiplication’, Comput. Math. Math. Phys. 53(12) (2013), 1781–1795. MR 3146566Google Scholar | DOI
[39] , ‘Relative bilinear complexity and matrix multiplication’, J. Reine Angew. Math. 375 376 (1987), 406–443. MR MR882307 (88h:11026)Google Scholar
[40] , ‘Gaussian elimination is not optimal’, Numer. Math. 13 (1969), 354–356. MR 248973Google Scholar | DOI
[41] , ‘Rank and optimal computation of generic tensors’, Linear Algebra Appl. 52/53 (1983), 645–685. MR 85b:15039Google Scholar | DOI
Cité par Sources :