The Asymptotic Statistics of Random Covering Surfaces
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$. We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$, where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g. Given $\phi \in \mathbb {X}_{g,n}$ and $\gamma \in \Gamma _{g}$, we let $\mathsf {fix}_{\gamma }(\phi )$ be the number of fixed points of the permutation $\phi (\gamma )$. The function $\mathsf {fix}_{\gamma }$ is a special case of a natural family of functions on $\mathbb {X}_{g,n}$ called Wilson loops. Our new methodology leads to an asymptotic formula, as $n\to \infty $, for the expectation of $\mathsf {fix}_{\gamma }$ with respect to the uniform probability measure on $\mathbb {X}_{g,n}$, which is denoted by $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$. We prove that if $\gamma \in \Gamma _{g}$ is not the identity and q is maximal such that $\gamma $ is a qth power in $\Gamma _{g}$, then

$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1}) \end{align*}$

as $n\to \infty $, where $d\left (q\right )$ is the number of divisors of q. Even the weaker corollary that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$ as $n\to \infty $ is a new result of this paper. We also prove that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ can be approximated to any order $O(n^{-M})$ by a polynomial in $n^{-1}$.
@article{10_1017_fmp_2023_13,
     author = {Michael Magee and Doron Puder},
     title = {The {Asymptotic} {Statistics} of {Random} {Covering} {Surfaces}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.13/}
}
TY  - JOUR
AU  - Michael Magee
AU  - Doron Puder
TI  - The Asymptotic Statistics of Random Covering Surfaces
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.13/
DO  - 10.1017/fmp.2023.13
LA  - en
ID  - 10_1017_fmp_2023_13
ER  - 
%0 Journal Article
%A Michael Magee
%A Doron Puder
%T The Asymptotic Statistics of Random Covering Surfaces
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.13/
%R 10.1017/fmp.2023.13
%G en
%F 10_1017_fmp_2023_13
Michael Magee; Doron Puder. The Asymptotic Statistics of Random Covering Surfaces. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.13

[AB83] Atiyah, M. F. and Bott, R., ‘The Yang–Mills equations over Riemann surfaces’, Philos. Trans. Roy. Soc. London Ser. A 308(1505) (1983), 523–615.Google Scholar

[ABB+11] Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J. and Samet, I., ‘On the growth of Betti numbers of locally symmetric spaces’, C. R. Math. Acad. Sci. Paris 349(15–16) (2011), 831–835.Google Scholar | DOI

[ABB+17] Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J. and Samet, I., ‘On the growth of -invariants for sequences of lattices in Lie groups’, Ann. of Math. (2) 185(3) (2017), 711–790.Google Scholar | DOI

[Bau62] Baumslag, G., ‘On generalised free products’, Math. Zeit. 78(1) (1962), 423–438.Google Scholar | DOI

[BP20] Baker, E. and Petri, B., ‘Statistics of finite degree covers of torus knot complements’, Preprint, 2020, .Google Scholar | arXiv

[BR10] Bou-Rabee, K., ‘Quantifying residual finiteness’, J. Algebra 323(3) (2020), 729–737.Google Scholar | DOI

[BS87] Birman, J. S. and Series, C., ‘Dehn’s algorithm revisited, with applications to simple curves on surfaces’, in Combinatorial Group Theory and Topology (Alta, Utah, 1984), Ann. of Math. Stud., vol. 111 (Princeton Univ. Press, Princeton, NJ, 1987), 451–478.Google Scholar | DOI

[BS01] Benjamini, I. and Schramm, O., ‘Recurrence of distributional limits of finite planar graphs’, Electron. J. Probab. 6(23) (2001), 13.Google Scholar | DOI

[Bus10] Buser, P., Geometry and Spectra of Compact Riemann Surfaces, Modern Birkhäuser Classics, (Birkhäuser Boston, Ltd., Boston, MA, 2010). Reprint of the 1992 edition.Google Scholar | DOI

[CŚ06] Collins, B. and Śniady, P., ‘Integration with respect to the Haar measure on unitary, orthogonal and symplectic group’, Comm. Math. Phys. 264(3) (2006), 773–795.Google Scholar | DOI

[CSST10] Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Representation Theory of the Symmetric Troups: The Okounkov–Vershik Approach, Character Formulas, and Partition Algebras (Cambridge University Press, Cambridge, 2010).Google Scholar | DOI

[Deh12] Dehn, M., ‘Transformation der Kurven auf zweiseitigen Flächen’, Math. Ann. 72(3) (1912), 413–421.Google Scholar | DOI

[Dix69] Dixon, J. D., ‘The probability of generating the symmetric group’, Math. Z. 110(3) (1969), 199–205.Google Scholar | DOI

[EWPS21] Ernst-West, D., Puder, D. and Seidel, M., ‘Word measures on and free group algebras’, Preprint, 2021, .Google Scholar | arXiv

[FRT54] Frame, J. S., Robinson, G. De B. and Thrall, R. M., ‘The hook graphs of the symmetric groups’, Canad. J. Math. 6 (1954), 316–324.Google Scholar | DOI

[Gam06] Gamburd, A., ‘Poisson–Dirichlet distribution for random Belyi surfaces’, Ann. Probab. 34(5) (2006), 1827–1848.Google Scholar | DOI

[Gol84] Goldman, W. M., ‘The symplectic nature of fundamental groups of surfaces’, Adv. in Math. 54(2) (1984), 200–225.Google Scholar | DOI

[Hat05] Hatcher, A., Algebraic Topology (Cambridge University Press, Cambridge, 2005).Google Scholar

[Hem72] Hempel, J., ‘Residual finiteness of surface groups’, Proc. Amer. Math. Soc. 32 (1972), 323.Google Scholar | DOI

[HP22] Hanany, L. and Puder, D., ‘Word measures on symmetric groups’, Int. Math. Res. Not. IMRN (2022). doi: .Google Scholar | DOI

[Hur02] Hurwitz, A., ‘Ueber die anzahl der Riemann’schen flächen mit gegebenen verzweigungspunkten’, Math. Ann. 55(1) (1902), 53–66.Google Scholar | DOI

[Lab13] Labourie, F., Lectures on Representations of Surface Groups, Zurich Lectures in Advanced Mathematics (Eur. Math. Soc. (EMS), Zürich, 2013).Google Scholar | DOI

[LLM23] Lazarovich, N., Levit, A. and Minsky, Y., ‘Surface groups are flexibly stable’, J. Eur. Math. Soc (JEMS) 2023. To appear.Google Scholar | arXiv

[LS04] Liebeck, M. W. and Shalev, A., ‘Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks’, J. Algebra 276(2) (2004), 552–601.Google Scholar | DOI

[Lul96] Lulov, N., ‘Random walks on symmetric groups generated by conjugacy classes’, PhD thesis, Harvard University, 1996.Google Scholar

[Mag21] Magee, M., ‘Random unitary representations of surface groups II: The large limit’, Geom. Topol. To appear, 2023, .Google Scholar | arXiv

[Mag22] Magee, M., ‘Random unitary representations of surface groups I: Asymptotic expansions’, Comm. Math. Phys. 391(1) (2022), 119–171.Google ScholarPubMed | DOI

[Med78] Mednyhk, A. D., ‘Determination of the number of nonequivalent coverings over a compact Riemann surface’, Dokl. Akad. Nauk SSSR 239(2) (1978), 269–271.Google Scholar

[Mir07] Mirzakhani, M., ‘Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces’, Invent. Math. 167(1) (2007), 179–222.Google Scholar | DOI

[MNP22] Magee, M., Naud, F. and Puder, D., ‘A random cover of a compact hyperbolic surface has relative spectral gap ’, Geom. Funct. Anal. (GAFA) 32(3) (2022), 595–661.Google Scholar | DOI

[MP02] Müller, T. W. and Puchta, J.C., ‘Character theory of symmetric groups and subgroup growth of surface groups’, J. Lond. Math. Soc. 66(3) (2002), 623–640.Google Scholar | DOI

[MP19] Magee, M. and Puder, D., ‘Matrix group integrals, surfaces, and mapping class groups I: ’, Invent. Math. 218(2) (2019), 341–411.Google Scholar | DOI

[MP21] Magee, M. and Puder, D., ‘Surface words are determined by word measures on groups’, Israel Journal of Mathematics 241 (2021), 749–774.Google Scholar | DOI

[MP22a] Magee, M. and Puder, D., ‘Core surfaces’, Geom. Dedicata 216(46) (2022), 1–25.Google Scholar | DOI

[MP22b] Magee, M. and Puder, D., ‘Matrix group integrals, surfaces, and mapping class groups II: and ’, Math. Ann. (2022). doi: 10.1007/s00208-022-02542-1.Google Scholar | DOI

[Nic94] Nica, A., ‘On the number of cycles of given length of a free word in several random permutations’, Random Structures Algorithms 5(5) (1994), 703–730.Google Scholar | DOI

[PP15] Puder, D. and Parzanchevski, O., ‘Measure preserving words are primitive’, J. Amer. Math. Soc. 28(1) (2015), 63–97.Google Scholar | DOI

[PZ22] Puder, D. and Zimhoni, T., ‘Local statistics of random permutations from free products’, Preprint 2022, .Google Scholar | arXiv

[Sco78] Scott, P., ‘Subgroups of surface groups are almost geometric’, J. Lond. Math. Soc. 2(3) (1978), 555–565.Google Scholar | DOI

[Sta83] Stallings, J. R., ‘Topology of finite graphs’, Invent. Math. 71(3) (1983), 551–565.Google Scholar | DOI

[Tom67] Tomita, M., ‘On canonical forms of von Neumann algebras’, in Fifth Functional Analysis Sympos. (Tôhoku Univ., Sendai, 1967) (Math. Inst., Tôhoku Univ., Sendai, Japan, 1967), 101–102. Japanese.Google Scholar

[VDN92] Voiculescu, D. V., Dykema, K. J. and Nica, A., Free Random Variables, CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, RI, 1992).Google Scholar | DOI

[VO96] Vershik, A. and Okounkov, A., ‘A new approach to representation theory of symmetric groups’, Selecta Math. (N.S.) 2(4) (1996), 581–606.Google Scholar

[Wit91] Witten, E., ‘On quantum gauge theories in two dimensions’, Comm. Math. Phys. 141(1) (1991), 153–209.Google Scholar | DOI

[Wri20] Wright, A., ‘A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces’, Bull. Amer. Math. Soc. (N.S.) 57(3) (2020), 359–408.Google Scholar | DOI

[Zag94] Zagier, D., ‘Values of zeta functions and their applications’, in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120 (Birkhäuser, Basel, 1994), 497–512.Google Scholar | DOI

Cité par Sources :