Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1}) \end{align*}$ |
@article{10_1017_fmp_2023_13,
author = {Michael Magee and Doron Puder},
title = {The {Asymptotic} {Statistics} of {Random} {Covering} {Surfaces}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fmp.2023.13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.13/}
}
Michael Magee; Doron Puder. The Asymptotic Statistics of Random Covering Surfaces. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.13
[AB83] and , ‘The Yang–Mills equations over Riemann surfaces’, Philos. Trans. Roy. Soc. London Ser. A 308(1505) (1983), 523–615.Google Scholar
[ABB+11] , , , , , and , ‘On the growth of Betti numbers of locally symmetric spaces’, C. R. Math. Acad. Sci. Paris 349(15–16) (2011), 831–835.Google Scholar | DOI
[ABB+17] , , , , , and , ‘On the growth of -invariants for sequences of lattices in Lie groups’, Ann. of Math. (2) 185(3) (2017), 711–790.Google Scholar | DOI
[Bau62] , ‘On generalised free products’, Math. Zeit. 78(1) (1962), 423–438.Google Scholar | DOI
[BP20] and , ‘Statistics of finite degree covers of torus knot complements’, Preprint, 2020, .Google Scholar | arXiv
[BR10] , ‘Quantifying residual finiteness’, J. Algebra 323(3) (2020), 729–737.Google Scholar | DOI
[BS87] and , ‘Dehn’s algorithm revisited, with applications to simple curves on surfaces’, in Combinatorial Group Theory and Topology (Alta, Utah, 1984), Ann. of Math. Stud., vol. 111 (Princeton Univ. Press, Princeton, NJ, 1987), 451–478.Google Scholar | DOI
[BS01] and , ‘Recurrence of distributional limits of finite planar graphs’, Electron. J. Probab. 6(23) (2001), 13.Google Scholar | DOI
[Bus10] , Geometry and Spectra of Compact Riemann Surfaces, Modern Birkhäuser Classics, (Birkhäuser Boston, Ltd., Boston, MA, 2010). Reprint of the 1992 edition.Google Scholar | DOI
[CŚ06] and , ‘Integration with respect to the Haar measure on unitary, orthogonal and symplectic group’, Comm. Math. Phys. 264(3) (2006), 773–795.Google Scholar | DOI
[CSST10] , and , Representation Theory of the Symmetric Troups: The Okounkov–Vershik Approach, Character Formulas, and Partition Algebras (Cambridge University Press, Cambridge, 2010).Google Scholar | DOI
[Deh12] , ‘Transformation der Kurven auf zweiseitigen Flächen’, Math. Ann. 72(3) (1912), 413–421.Google Scholar | DOI
[Dix69] , ‘The probability of generating the symmetric group’, Math. Z. 110(3) (1969), 199–205.Google Scholar | DOI
[EWPS21] , and , ‘Word measures on and free group algebras’, Preprint, 2021, .Google Scholar | arXiv
[FRT54] , and , ‘The hook graphs of the symmetric groups’, Canad. J. Math. 6 (1954), 316–324.Google Scholar | DOI
[Gam06] , ‘Poisson–Dirichlet distribution for random Belyi surfaces’, Ann. Probab. 34(5) (2006), 1827–1848.Google Scholar | DOI
[Gol84] , ‘The symplectic nature of fundamental groups of surfaces’, Adv. in Math. 54(2) (1984), 200–225.Google Scholar | DOI
[Hat05] , Algebraic Topology (Cambridge University Press, Cambridge, 2005).Google Scholar
[Hem72] , ‘Residual finiteness of surface groups’, Proc. Amer. Math. Soc. 32 (1972), 323.Google Scholar | DOI
[HP22] and , ‘Word measures on symmetric groups’, Int. Math. Res. Not. IMRN (2022). doi: .Google Scholar | DOI
[Hur02] , ‘Ueber die anzahl der Riemann’schen flächen mit gegebenen verzweigungspunkten’, Math. Ann. 55(1) (1902), 53–66.Google Scholar | DOI
[Lab13] , Lectures on Representations of Surface Groups, Zurich Lectures in Advanced Mathematics (Eur. Math. Soc. (EMS), Zürich, 2013).Google Scholar | DOI
[LLM23] , and , ‘Surface groups are flexibly stable’, J. Eur. Math. Soc (JEMS) 2023. To appear.Google Scholar | arXiv
[LS04] and , ‘Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks’, J. Algebra 276(2) (2004), 552–601.Google Scholar | DOI
[Lul96] , ‘Random walks on symmetric groups generated by conjugacy classes’, PhD thesis, Harvard University, 1996.Google Scholar
[Mag21] , ‘Random unitary representations of surface groups II: The large limit’, Geom. Topol. To appear, 2023, .Google Scholar | arXiv
[Mag22] , ‘Random unitary representations of surface groups I: Asymptotic expansions’, Comm. Math. Phys. 391(1) (2022), 119–171.Google ScholarPubMed | DOI
[Med78] , ‘Determination of the number of nonequivalent coverings over a compact Riemann surface’, Dokl. Akad. Nauk SSSR 239(2) (1978), 269–271.Google Scholar
[Mir07] , ‘Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces’, Invent. Math. 167(1) (2007), 179–222.Google Scholar | DOI
[MNP22] , and , ‘A random cover of a compact hyperbolic surface has relative spectral gap ’, Geom. Funct. Anal. (GAFA) 32(3) (2022), 595–661.Google Scholar | DOI
[MP02] and , ‘Character theory of symmetric groups and subgroup growth of surface groups’, J. Lond. Math. Soc. 66(3) (2002), 623–640.Google Scholar | DOI
[MP19] and , ‘Matrix group integrals, surfaces, and mapping class groups I: ’, Invent. Math. 218(2) (2019), 341–411.Google Scholar | DOI
[MP21] and , ‘Surface words are determined by word measures on groups’, Israel Journal of Mathematics 241 (2021), 749–774.Google Scholar | DOI
[MP22a] and , ‘Core surfaces’, Geom. Dedicata 216(46) (2022), 1–25.Google Scholar | DOI
[MP22b] and , ‘Matrix group integrals, surfaces, and mapping class groups II: and ’, Math. Ann. (2022). doi: 10.1007/s00208-022-02542-1.Google Scholar | DOI
[Nic94] , ‘On the number of cycles of given length of a free word in several random permutations’, Random Structures Algorithms 5(5) (1994), 703–730.Google Scholar | DOI
[PP15] and , ‘Measure preserving words are primitive’, J. Amer. Math. Soc. 28(1) (2015), 63–97.Google Scholar | DOI
[PZ22] and , ‘Local statistics of random permutations from free products’, Preprint 2022, .Google Scholar | arXiv
[Sco78] , ‘Subgroups of surface groups are almost geometric’, J. Lond. Math. Soc. 2(3) (1978), 555–565.Google Scholar | DOI
[Sta83] , ‘Topology of finite graphs’, Invent. Math. 71(3) (1983), 551–565.Google Scholar | DOI
[Tom67] , ‘On canonical forms of von Neumann algebras’, in Fifth Functional Analysis Sympos. (Tôhoku Univ., Sendai, 1967) (Math. Inst., Tôhoku Univ., Sendai, Japan, 1967), 101–102. Japanese.Google Scholar
[VDN92] , and , Free Random Variables, CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, RI, 1992).Google Scholar | DOI
[VO96] and , ‘A new approach to representation theory of symmetric groups’, Selecta Math. (N.S.) 2(4) (1996), 581–606.Google Scholar
[Wit91] , ‘On quantum gauge theories in two dimensions’, Comm. Math. Phys. 141(1) (1991), 153–209.Google Scholar | DOI
[Wri20] , ‘A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces’, Bull. Amer. Math. Soc. (N.S.) 57(3) (2020), 359–408.Google Scholar | DOI
[Zag94] , ‘Values of zeta functions and their applications’, in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120 (Birkhäuser, Basel, 1994), 497–512.Google Scholar | DOI
Cité par Sources :