Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_12,
     author = {Zhuchao Ji and Junyi Xie},
     title = {Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.12/}
}
                      
                      
                    TY - JOUR AU - Zhuchao Ji AU - Junyi Xie TI - Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.12/ DO - 10.1017/fmp.2023.12 LA - en ID - 10_1017_fmp_2023_12 ER -
Zhuchao Ji; Junyi Xie. Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.12
[Aut01] , ‘Points entiers sur les surfaces arithm´etiques’, J. Reine Angew. Math. 531 (2001), 201–235 Google Scholar
[BCR98] , and , ‘Real algebraic geometry’, in Ergebnisse der Mathematik und ihrer Grenzgebiete 3/Results in Mathematics and Related Areas vol. 36 (Springer-Verlag, Berlin, 1998). Translated from the 1987 French original, Revised by the authors.Google Scholar
[BDSKL20] , , and , ‘Marked length spectrum, homoclinic orbits and the geometry of open dispersing billiards’, Comm. Math. Phys. 374(3) (2020), 1531–1575.Google Scholar | DOI
[Ben] , ‘Dynamics in one non-Archimedean variable’, in Graduate Studies in Mathematics vol. 198 (American Mathematical Society, Providence, RI).Google Scholar
[Ber90] , ‘Spectral theory and analytic geometry over non-Archimedean fields’, in Mathematical Surveys and Monographs no. 33 (American Mathematical Society, 1990).Google Scholar
[BIJL14] , , and , ‘Attracting cycles in p-adic dynamics and height bounds for postcritically finite maps’, Duke Math. J. 163(13) (2014), 2325–2356.Google Scholar | DOI
[BK85] and , ‘Manifolds with nonpositive curvature,’ Ergodic Theory Dynam. Systems 5(2) (1985), 307–317.Google Scholar | DOI
[BLR90] , and , ‘Néron models’, in Ergebnisse der Mathematik und ihrer Grenzgebiete 3/Results in Mathematics and Related Areas vol. 21 (Springer-Verlag, Berlin, 1990).Google Scholar
[BR10] and , Potential Theory and Dynamics on the Berkovich Projective Line no. 159 (American Mathematical Society, 2010).Google Scholar | DOI
[Cro90] , ‘Rigidity for surfaces of nonpositive curvature’, Comment. Math. Helv. 65(1) (1990), 150–169.Google Scholar | DOI
[DF19] and , ‘Degenerations of SL(2,C) representations and Lyapunov exponents’, Ann. H. Lebesgue 2 (2019), 515–565.Google Scholar | DOI
[DH93] and , ‘A proof of Thurston’s topological characterization of rational functions’, Acta Math. 171(2) (1993) 263–297.Google Scholar | DOI
[DSKL19] , and , ‘Marked length spectral determination of analytic chaotic billiards with axial symmetries’, 2019.Google Scholar | arXiv
[EVS11] and , ‘Rational maps with real multipliers’, in Transactions of the American Mathematical Society 363(12) (2011), 6453–6463.Google Scholar | DOI
[FRL] and , Unpublished manuscript.Google Scholar
[FRL10] and , ‘Théorie ergodique des fractions rationnelles sur un corps ultramétrique’, Proc. Lond. Math. Soc. 3 100(1) (2010), 116–154.Google Scholar | DOI
[GL19] and , ‘The marked length spectrum of Anosov manifolds’, Ann. of Math. 2 190(1) (2019), 321–344.Google Scholar | DOI
[GPR10] , and , ‘On the lyapunov spectrum for rational maps’, Mathematische Annalen 4(348) (2010), 965–1004.Google Scholar | DOI
[GPRRL13] , , and , ‘Lyapunov spectrum for exceptional rational maps’, Ann. Acad. Sci. Fenn. Math 38(2) (2013), 631–656.Google Scholar | DOI
[HKS18] , and , ‘On the marked length spectrum of generic strictly convex billiard tables’, Duke Math. J. 167(1) (2018), 175–209.Google Scholar | DOI
[Hug21] , ‘Unicritical polynomial maps with rational multipliers’, Conform. Geom. Dyn. 25 (2021), 79–87.Google Scholar | DOI
[Hug22a] , ‘Quadratic rational maps with integer multipliers.’, in Mathematische Zeitschrift (2022).Google Scholar | DOI
[Hug22b] , ‘Rational maps with rational multipliers,’ 2022.Google Scholar | arXiv
[Jon98] , ‘Holomorphic motions of hyperbolic sets’, Michigan Mathematical Journal 45(2) (1998), 409–415.Google Scholar | DOI
[Jon15] , ‘Dynamics on Berkovich spaces in low dimensions’, in , (eds.), Berkovich Spaces and Applications (Lecture Notes in Mathematics) vol. 2119 (Springer, 2015), 205–366.Google Scholar | DOI
[Ked11] , ‘Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations’, Compos. Math. 147(2) (2011), 467–523.Google Scholar | DOI
[Kiw15] , ‘Rescaling limits of complex rational maps’, Duke Mathematical Journal 164(7) (2015), 1437–1470.Google Scholar | DOI
[Liv72] , ‘Cohomology of dynamical systems’, Mathematics of the USSR-Izvestiya 6(6) (1972), 1278.Google Scholar | DOI
[LS06] and , ‘Smooth conjugacy between S-unimodal maps’, Nonlinearity 19(7) (2006), 1629.Google Scholar | DOI
[Luo22] , ‘Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces’, Duke Mathematical Journal 171(14) (2022), 2943–3001.Google Scholar | DOI
[McM87] , ‘Families of rational maps and iterative root-finding algorithms’, Ann. of Math. (2) 125(3) (1987), 467–493.Google Scholar | DOI
[McM16] , Complex Dynamics and Renormalization (AM-135) vol. 135 (Princeton University Press, 2016).Google Scholar
[MdM99] and , ‘The multipliers of periodic points in one-dimensional dynamics’, Nonlinearity 12(2) (1999), 217.Google Scholar | DOI
[MF82] and , ‘Geometric invariant theory’, in Ergebnisse der Mathematik und ihrer Grenzgebiete/Results in Mathematics and Related Areas vol. 34, second edn. (Springer-Verlag, Berlin, 1982).Google Scholar
[Mil93] , ‘Geometry and dynamics of quadratic rational maps’, Experiment. Math. 2(1) (1993), 37–83. With an appendix by the author and L. Tan.Google Scholar | DOI
[Mil06] , ‘On Lattès maps’, in Dynamics on the Riemann Sphere: A Bodil Branner Festschrift (2006), 9.Google Scholar | DOI
[Mil11] , Dynamics in One Complex Variable vol. 160 (Princeton University Press, 2011).Google Scholar
[Ota90] , ‘Le spectre marqué des longueurs des surfaces à courbure négative’, Ann. of Math. (2) 131(1) (1990), 151–162.Google Scholar | DOI
[Poo17] , ‘Rational points on varieties’, in Graduate Studies in Mathematics vol. 186 (American Mathematical Society, Providence, RI, 2017).Google Scholar
[PU99] and , ‘Rigidity of tame rational functions’, Bulletin of the Polish Academy of Sciences Mathematics 47(2) (1999), 163–181.Google Scholar
[PU10] and , Conformal Fractals: Ergodic Theory Methods vol. 371 (Cambridge University Press, 2010).Google Scholar | DOI
[PUZ89] , and , ‘Harmonic, gibbs and hausdorff measures on repellers for holomorphic maps, I’, Annals of Mathematics 130(1) (1989), 1–40.Google Scholar | DOI
[Ree84] , ‘Ergodic rational maps with dense critical point forward orbit’, Ergodic Theory Dynam. Systems 4(2) (1984), 311–322.Google Scholar | DOI
[Rit22] , ‘Periodic functions with a multiplication theorem’, Transactions of the American Mathematical Society 23(1) (1922), 16–25.Google Scholar | DOI
[RL03a] , ‘Dynamique des fonctions rationnelles sur des corps locaux’, in Geometric Methods in Dynamics II no. 287 (2003) xv, 147–230.Google Scholar
[RL03b] , ‘Espace hyperbolique p-adique et dynamique des fonctions rationnelles’, Compositio Math. 138(2) (2003), 199–231.Google Scholar | DOI
[Sil07] , ‘The arithmetic of dynamical systems’, in Graduate Texts in Mathematics vol. 241 (Springer-Verlag, New York, 2007).Google Scholar
[Sil12] , ‘Moduli spaces and arithmetic dynamics’, in CRM Monograph Series vol. 30 (American Mathematical Society, Providence, RI, 2012).Google Scholar
[SS85] and , ‘Expanding endomorphisms of the circle revisited’, Ergodic Theory and Dynamical Systems 5(2) (1985), 285–289.Google Scholar | DOI
[Ste19] , ‘A non-Archimedean Ohsawa-Takegoshi extension theorem’, Math. Z. 291(1-2) (2019), 279–302.Google Scholar | DOI
[Sul86] , ‘Quasiconformal homeomorphisms in dynamics, topology, and geometry’, in Proceedings of the International Congress of Mathematicians vol. 1 (1986), 2.Google Scholar
[Zdu90] , ‘Parabolic orbifolds and the dimension of the maximal measure for rational maps’, Inventiones mathematicae 99(1) (1990), 627–649.Google Scholar | DOI
[Zdu14] , ‘Characteristic exponents of rational functions’, Bulletin of the Polish Academy of Sciences Mathematics 62(3) (2014).Google Scholar | DOI
Cité par Sources :
