Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

The aims of this paper are to answer several conjectures and questions about the multiplier spectrum of rational maps and giving new proofs of several rigidity theorems in complex dynamics by combining tools from complex and non-Archimedean dynamics.A remarkable theorem due to McMullen asserts that, aside from the flexible Lattès family, the multiplier spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. The proof relies on Thurston’s rigidity theorem for post-critically finite maps, in which Teichmüller theory is an essential tool. We will give a new proof of McMullen’s theorem (and therefore a new proof of Thurston’s theorem) without using quasiconformal maps or Teichmüller theory.We show that, aside from the flexible Lattès family, the length spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. This generalizes the aforementioned McMullen’s theorem. We will also prove a rigidity theorem for marked length spectrum. Similar ideas also yield a simple proof of a rigidity theorem due to Zdunik.We show that a rational map is exceptional if and only if one of the following holds: (i) the multipliers of periodic points are contained in the integer ring of an imaginary quadratic field, and (ii) all but finitely many periodic points have the same Lyapunov exponent. This solves two conjectures of Milnor.
@article{10_1017_fmp_2023_12,
     author = {Zhuchao Ji and Junyi Xie},
     title = {Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.12/}
}
TY  - JOUR
AU  - Zhuchao Ji
AU  - Junyi Xie
TI  - Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.12/
DO  - 10.1017/fmp.2023.12
LA  - en
ID  - 10_1017_fmp_2023_12
ER  - 
%0 Journal Article
%A Zhuchao Ji
%A Junyi Xie
%T Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.12/
%R 10.1017/fmp.2023.12
%G en
%F 10_1017_fmp_2023_12
Zhuchao Ji; Junyi Xie. Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.12

[Aut01] Autissier, P., ‘Points entiers sur les surfaces arithm´etiques’, J. Reine Angew. Math. 531 (2001), 201–235 Google Scholar

[BCR98] Bochnak, J., Coste, M. and Roy, M., ‘Real algebraic geometry’, in Ergebnisse der Mathematik und ihrer Grenzgebiete 3/Results in Mathematics and Related Areas vol. 36 (Springer-Verlag, Berlin, 1998). Translated from the 1987 French original, Revised by the authors.Google Scholar

[BDSKL20] Bálint, P., De Simoi, J., Kaloshin, V. and Leguil, M., ‘Marked length spectrum, homoclinic orbits and the geometry of open dispersing billiards’, Comm. Math. Phys. 374(3) (2020), 1531–1575.Google Scholar | DOI

[Ben] Benedetto, R. L., ‘Dynamics in one non-Archimedean variable’, in Graduate Studies in Mathematics vol. 198 (American Mathematical Society, Providence, RI).Google Scholar

[Ber90] Berkovich, V. G., ‘Spectral theory and analytic geometry over non-Archimedean fields’, in Mathematical Surveys and Monographs no. 33 (American Mathematical Society, 1990).Google Scholar

[BIJL14] Benedetto, R., Ingram, P., Jones, R. and Levy, A., ‘Attracting cycles in p-adic dynamics and height bounds for postcritically finite maps’, Duke Math. J. 163(13) (2014), 2325–2356.Google Scholar | DOI

[BK85] Burns, K. and Katok, A., ‘Manifolds with nonpositive curvature,’ Ergodic Theory Dynam. Systems 5(2) (1985), 307–317.Google Scholar | DOI

[BLR90] Bosch, S., Lütkebohmert, W. and Raynaud, M., ‘Néron models’, in Ergebnisse der Mathematik und ihrer Grenzgebiete 3/Results in Mathematics and Related Areas vol. 21 (Springer-Verlag, Berlin, 1990).Google Scholar

[BR10] Baker, M. and Rumely, R. S., Potential Theory and Dynamics on the Berkovich Projective Line no. 159 (American Mathematical Society, 2010).Google Scholar | DOI

[Cro90] Croke, C. B., ‘Rigidity for surfaces of nonpositive curvature’, Comment. Math. Helv. 65(1) (1990), 150–169.Google Scholar | DOI

[DF19] Dujardin, R. and Favre, C., ‘Degenerations of SL(2,C) representations and Lyapunov exponents’, Ann. H. Lebesgue 2 (2019), 515–565.Google Scholar | DOI

[DH93] Douady, A. and Hubbard, J. H., ‘A proof of Thurston’s topological characterization of rational functions’, Acta Math. 171(2) (1993) 263–297.Google Scholar | DOI

[DSKL19] De Simoi, J., Kaloshin, V. and Leguil, M., ‘Marked length spectral determination of analytic chaotic billiards with axial symmetries’, 2019.Google Scholar | arXiv

[EVS11] Eremenko, A. and Van Strien, S., ‘Rational maps with real multipliers’, in Transactions of the American Mathematical Society 363(12) (2011), 6453–6463.Google Scholar | DOI

[FRL] Favre, C. and Rivera-Letelier, J., Unpublished manuscript.Google Scholar

[FRL10] Favre, C. and Rivera-Letelier, J., ‘Théorie ergodique des fractions rationnelles sur un corps ultramétrique’, Proc. Lond. Math. Soc. 3 100(1) (2010), 116–154.Google Scholar | DOI

[GL19] Guillarmou, C. and Lefeuvre, T., ‘The marked length spectrum of Anosov manifolds’, Ann. of Math. 2 190(1) (2019), 321–344.Google Scholar | DOI

[GPR10] Gelfert, K., Przytycki, F. and Rams, M., ‘On the lyapunov spectrum for rational maps’, Mathematische Annalen 4(348) (2010), 965–1004.Google Scholar | DOI

[GPRRL13] Gelfert, K., Przytycki, F., Rams, M. and Rivera-Letelier, J., ‘Lyapunov spectrum for exceptional rational maps’, Ann. Acad. Sci. Fenn. Math 38(2) (2013), 631–656.Google Scholar | DOI

[HKS18] Huang, G., Kaloshin, V. and Sorrentino, A., ‘On the marked length spectrum of generic strictly convex billiard tables’, Duke Math. J. 167(1) (2018), 175–209.Google Scholar | DOI

[Hug21] Huguin, V., ‘Unicritical polynomial maps with rational multipliers’, Conform. Geom. Dyn. 25 (2021), 79–87.Google Scholar | DOI

[Hug22a] Huguin, V., ‘Quadratic rational maps with integer multipliers.’, in Mathematische Zeitschrift (2022).Google Scholar | DOI

[Hug22b] Huguin, V., ‘Rational maps with rational multipliers,’ 2022.Google Scholar | arXiv

[Jon98] Jonsson, M., ‘Holomorphic motions of hyperbolic sets’, Michigan Mathematical Journal 45(2) (1998), 409–415.Google Scholar | DOI

[Jon15] Jonsson, M., ‘Dynamics on Berkovich spaces in low dimensions’, in Nicaise, J. Ducros, A., Favre, C. (eds.), Berkovich Spaces and Applications (Lecture Notes in Mathematics) vol. 2119 (Springer, 2015), 205–366.Google Scholar | DOI

[Ked11] Kedlaya, K. S., ‘Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations’, Compos. Math. 147(2) (2011), 467–523.Google Scholar | DOI

[Kiw15] Kiwi, J., ‘Rescaling limits of complex rational maps’, Duke Mathematical Journal 164(7) (2015), 1437–1470.Google Scholar | DOI

[Liv72] Livšic, A.N., ‘Cohomology of dynamical systems’, Mathematics of the USSR-Izvestiya 6(6) (1972), 1278.Google Scholar | DOI

[LS06] Li, S. and Shen, W., ‘Smooth conjugacy between S-unimodal maps’, Nonlinearity 19(7) (2006), 1629.Google Scholar | DOI

[Luo22] Luo, Y., ‘Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces’, Duke Mathematical Journal 171(14) (2022), 2943–3001.Google Scholar | DOI

[McM87] Mcmullen, C., ‘Families of rational maps and iterative root-finding algorithms’, Ann. of Math. (2) 125(3) (1987), 467–493.Google Scholar | DOI

[McM16] Mcmullen, C. T., Complex Dynamics and Renormalization (AM-135) vol. 135 (Princeton University Press, 2016).Google Scholar

[MdM99] Martens, M. and De Melo, W., ‘The multipliers of periodic points in one-dimensional dynamics’, Nonlinearity 12(2) (1999), 217.Google Scholar | DOI

[MF82] Mumford, D. and Fogarty, J., ‘Geometric invariant theory’, in Ergebnisse der Mathematik und ihrer Grenzgebiete/Results in Mathematics and Related Areas vol. 34, second edn. (Springer-Verlag, Berlin, 1982).Google Scholar

[Mil93] Milnor, J., ‘Geometry and dynamics of quadratic rational maps’, Experiment. Math. 2(1) (1993), 37–83. With an appendix by the author and L. Tan.Google Scholar | DOI

[Mil06] Milnor, J., ‘On Lattès maps’, in Dynamics on the Riemann Sphere: A Bodil Branner Festschrift (2006), 9.Google Scholar | DOI

[Mil11] Milnor, J., Dynamics in One Complex Variable vol. 160 (Princeton University Press, 2011).Google Scholar

[Ota90] Otal, J.-P., ‘Le spectre marqué des longueurs des surfaces à courbure négative’, Ann. of Math. (2) 131(1) (1990), 151–162.Google Scholar | DOI

[Poo17] Poonen, B., ‘Rational points on varieties’, in Graduate Studies in Mathematics vol. 186 (American Mathematical Society, Providence, RI, 2017).Google Scholar

[PU99] Przytycki, F. and Urbański, M., ‘Rigidity of tame rational functions’, Bulletin of the Polish Academy of Sciences Mathematics 47(2) (1999), 163–181.Google Scholar

[PU10] Przytycki, F. and Urbański, M., Conformal Fractals: Ergodic Theory Methods vol. 371 (Cambridge University Press, 2010).Google Scholar | DOI

[PUZ89] Przytycki, F., Urbański, M. and Zdunik, A., ‘Harmonic, gibbs and hausdorff measures on repellers for holomorphic maps, I’, Annals of Mathematics 130(1) (1989), 1–40.Google Scholar | DOI

[Ree84] Rees, M., ‘Ergodic rational maps with dense critical point forward orbit’, Ergodic Theory Dynam. Systems 4(2) (1984), 311–322.Google Scholar | DOI

[Rit22] Ritt, J. F., ‘Periodic functions with a multiplication theorem’, Transactions of the American Mathematical Society 23(1) (1922), 16–25.Google Scholar | DOI

[RL03a] Rivera-Letelier, J., ‘Dynamique des fonctions rationnelles sur des corps locaux’, in Geometric Methods in Dynamics II no. 287 (2003) xv, 147–230.Google Scholar

[RL03b] Rivera-Letelier, J., ‘Espace hyperbolique p-adique et dynamique des fonctions rationnelles’, Compositio Math. 138(2) (2003), 199–231.Google Scholar | DOI

[Sil07] Silverman, J. H., ‘The arithmetic of dynamical systems’, in Graduate Texts in Mathematics vol. 241 (Springer-Verlag, New York, 2007).Google Scholar

[Sil12] Silverman, J. H., ‘Moduli spaces and arithmetic dynamics’, in CRM Monograph Series vol. 30 (American Mathematical Society, Providence, RI, 2012).Google Scholar

[SS85] Shub, M. and Sullivan, D., ‘Expanding endomorphisms of the circle revisited’, Ergodic Theory and Dynamical Systems 5(2) (1985), 285–289.Google Scholar | DOI

[Ste19] Stevenson, M., ‘A non-Archimedean Ohsawa-Takegoshi extension theorem’, Math. Z. 291(1-2) (2019), 279–302.Google Scholar | DOI

[Sul86] Sullivan, D., ‘Quasiconformal homeomorphisms in dynamics, topology, and geometry’, in Proceedings of the International Congress of Mathematicians vol. 1 (1986), 2.Google Scholar

[Zdu90] Zdunik, A., ‘Parabolic orbifolds and the dimension of the maximal measure for rational maps’, Inventiones mathematicae 99(1) (1990), 627–649.Google Scholar | DOI

[Zdu14] Zdunik, A., ‘Characteristic exponents of rational functions’, Bulletin of the Polish Academy of Sciences Mathematics 62(3) (2014).Google Scholar | DOI

Cité par Sources :