Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_11,
     author = {Kenny De Commer and Sergey Neshveyev and Lars Tuset and Makoto Yamashita},
     title = {Comparison of quantizations of symmetric spaces: cyclotomic {Knizhnik{\textendash}Zamolodchikov} equations and {Letzter{\textendash}Kolb} coideals},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.11/}
}
                      
                      
                    TY - JOUR AU - Kenny De Commer AU - Sergey Neshveyev AU - Lars Tuset AU - Makoto Yamashita TI - Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik–Zamolodchikov equations and Letzter–Kolb coideals JO - Forum of Mathematics, Pi PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.11/ DO - 10.1017/fmp.2023.11 LA - en ID - 10_1017_fmp_2023_11 ER -
%0 Journal Article %A Kenny De Commer %A Sergey Neshveyev %A Lars Tuset %A Makoto Yamashita %T Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik–Zamolodchikov equations and Letzter–Kolb coideals %J Forum of Mathematics, Pi %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.11/ %R 10.1017/fmp.2023.11 %G en %F 10_1017_fmp_2023_11
Kenny De Commer; Sergey Neshveyev; Lars Tuset; Makoto Yamashita. Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik–Zamolodchikov equations and Letzter–Kolb coideals. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.11
[Ara62] , ‘On root systems and an infinitesimal classification of irreducible symmetric spaces’, J. Math. Osaka City Univ. 13 (1962), 1–34. MR0153782.Google Scholar
[BK15] and , ‘The bar involution for quantum symmetric pairs’, Represent. Theory 19 (2015), 186–210, DOI:10.1090/ert/469. MR3414769.Google Scholar | DOI
[BK19] and , ‘Universal K-matrix for quantum symmetric pairs’, J. Reine Angew. Math. 747 (2019), 299–353. DOI:10.1515/crelle-2016-0012. MR3905136.Google Scholar | DOI
[BW18] and , ‘A new approach to Kazhdan–Lusztig theory of type via quantum symmetric pairs’, Astérisque 402 (2018), vii+134. MR3864017.Google Scholar
[BGI71] , and L, Illusie (eds.) Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Mathematics, vol. 225 (Springer-Verlag, Berlin-New York, 1971) (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Avec la collaboration de , , , , et J. P. Serre. MR0354655.Google Scholar | DOI
[Bor98] , ‘Semisimple Groups and Riemannian Symmetric Spaces’, Texts and Readings in Mathematics, vol. 16 (Hindustan Book Agency, New Delhi, 1998). MR1661166.Google Scholar | DOI
[Bou07] , ‘Éléments de mathématique’, Groupes et algèbres de Lie . chapitre 7 et 8, (Springer, Berlin-Heidelberg, 2007). Reprint of the 1975 (Hermann) edition.Google Scholar
[Bro12] , ‘A Kohno–Drinfeld theorem for the monodromy of cyclotomic KZ connections’, Comm. Math. Phys. 311(1) (2012), 55–96, DOI:10.1007/s00220-012-1424-0. MR2892463.Google Scholar
[Bro13] , ‘Cyclotomic associators and finite type invariants for tangles in the solid torus’, Algebr. Geom. Topol. 13(6) (2013), 3365–3409. DOI:10.2140/agt.2013.13.3365. MR3248737.Google Scholar | DOI
[Cal06] , ‘Quantization of formal classical dynamical -matrices: the reductive case’, Adv. Math. 204(1) (2006), 84–100. DOI:10.1016/j.aim.2005.05.009. MR2233127.Google Scholar | DOI
[Che84] , ‘Factorizing particles on a half line, and root systems’, Teoret. Mat. Fiz. 61(1) (1984), 35–44. MR774205.Google Scholar
[DCM20] and , ‘Quantum flag manifolds, quantum symmetric spaces and their associated universal -matrices’, Adv. Math. 366 (2020), 107029, 100. DOI:10.1016/j.aim.2020.107029, [math.QA]. MR4070299.Google Scholar | arXiv | DOI
[DCNTY19] , , and , ‘Ribbon braided module categories, quantum symmetric pairs and Knizhnik–Zamolodchikov equations’, Comm. Math. Phys. 367(3) (2019), 717–769. DOI:10.1007/s00220-019-03317-7. MR3943480.Google Scholar | DOI
[DCY13] and , ‘Tannaka–Kreĭn duality for compact quantum homogeneous spaces. I. General theory’, Theory Appl. Categ. 28(31) (2013), 1099–1138.Google Scholar
[tDHO98] and , ‘Quantum groups and cylinder braiding’, Forum Math. 10(5) (1998), 619–639. DOI:10.1515/form.10.5.619. MR1644317.Google Scholar | DOI
[Dix55] , ‘Cohomologie des algèbres de Lie nilpotentes’, Acta Sci. Math. Szeged 16 (1955), 246–250. MR0074780.Google Scholar
[Dol05] , ‘Covariant and equivariant formality theorems’, Adv. Math. 191(1) (2005), 147–177. DOI:10.1016/j.aim.2004.02.001. MR102846 (2006c:53101).Google Scholar | DOI
[DG95] and , ‘Some Poisson structures associated to Drinfeld–Jimbo -matrices and their quantization’, Israel J. Math. 92(1–3) (1995), 23–32. DOI:10.1007/BF02762068. MR1357743.Google Scholar | DOI
[DGS99] , and , ‘Double quantization on some orbits in the coadjoint representations of simple Lie groups’, Comm. Math. Phys. 204(1) (1999), 39–60. DOI:10.1007/s002200050636. MR1705663.Google Scholar | DOI
[DM03a] and , ‘Reflection equation, twist, and equivariant quantization’, Israel J. Math. 136 (2003), 11–28. DOI:10.1007/BF02807191. MR1998103.Google Scholar | DOI
[DM03b] and , ‘Method of quantum characters in equivariant quantization’, Comm. Math. Phys. 234(3) (2003), 533–555. DOI:10.1007/s00220-002-0771-7. MR1964382.Google Scholar | DOI
[DS97] and , ‘Cohomological construction of quantized universal enveloping algebras’, Trans. Amer. Math. Soc. 349(4) (1997), 1611–1632. DOI:10.1090/S0002-9947-97-01787-X. MR1390978.Google Scholar | DOI
[Dri89a] , ‘On almost cocommutative Hopf algebras’, Algebra i Analiz 1(2) (1989), 30–46. Translation in Leningrad Math. J. 1(2) (1990), 321–342. MR1025154 (91b:16046).Google Scholar
[Dri89b] , ‘Quasi-Hopf algebras’, Algebra i Analiz 1(6) (1989), 114–148. Translation in Leningrad Math. J. (6) (1990), 1419–1457. MR1047964 (91b:17016).Google Scholar
[Dri90] , ‘On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ’, Algebra i Analiz 2(4) (1990), 149–181. (Russian); English transl., Leningrad Math. J. (4) (1991), 829–860. MR1080203.Google Scholar
[Dri93] , ‘On Poisson homogeneous spaces of Poisson–Lie groups’, Teoret. Mat. Fiz. 95(2) (1993), 226–227. MR1243249 (94k:58045).Google Scholar
[Enr07] , ‘Quasi-reflection algebras and cyclotomic associators’, Selecta Math. (N.S.) 13(3) (2007), 391–463. DOI:10.1007/s00029-007-0048-2. MR2383601 (2010e:17009).Google Scholar | DOI
[EE05] and , ‘Quantization of classical dynamical -matrices with nonabelian base’, Comm. Math. Phys. 254(3) (2005), 603–650. DOI:10.1007/s00220-004-1243-z. MR2126485 (2006a:17011).Google Scholar | DOI
[EV98] and , ‘Geometry and classification of solutions of the classical dynamical Yang–Baxter equation’, Comm. Math. Phys. 192(1)(1998), 77–120. DOI:10.1007/s002200050292. MR1612160.Google Scholar | DOI
[Fel95] , Conformal Field Theory and Integrable Systems Associated to Elliptic Curves, Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Birkhäuser, Basel, Zürich, 1994; 1995), 1247–1255. MR1404026 (97m:81015).Google Scholar
[FL04] and , ‘A Poisson structure on compact symmetric space’s’, Comm. Math. Phys. 251(3) (2004), 557–566. DOI:10.1007/s00220-004-1178-4. MR2102330.Google Scholar | DOI
[GL00] , and , On a generalization of the Drinfeld-Kohno theorem, Proceedings of the Second ISAAC Congress, Vol. 2 (Fukuoka, 1999; Kluwer Acad. Publ., Dordrecht, 2000), 1371–1386. MR1940926 (2004a:32023).Google Scholar
[GS99] and , ‘Quantum sphere via reflection equation algebra’, Preprint, 1999, .Google Scholar | arXiv
[HC55] , ‘Representations of semisimple Lie groups. IV’, Amer. J. Math. 77 (1955), 743–777, DOI:10.2307/2372596. MR0072427.Google Scholar | DOI
[HC56] , ‘Representations of semisimple Lie groups. VI. Integrable and square-integrable representations’, Amer. J. Math. 78 (1956), 564–628, DOI:10.2307/2372674. MR0082056.Google Scholar | DOI
[Hel01] , Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34 (American Mathematical Society, Providence, RI, 2001). DOI:10.1090/gsm/034, ISBN 0-8218-2848-7. Corrected reprint of the 1978 original. MR1834454.Google Scholar
[Jan96] , Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6, (American Mathematical Society, Providence, RI, 1996). MR1359532.Google Scholar
[Kac90] , Infinite-Dimensional Lie Algebras, third edn. (Cambridge University Press, Cambridge,1990). DOI:10.1017/CBO9780511626234, MR1104219 (92k:17038).Google Scholar | DOI
[KW92] and , ‘On automorphisms of Kac–Moody algebras and groups’, Adv. Math. 92(2) (1992), 129–195. MR1155464.Google Scholar | DOI
[Kar96] , ‘Classification of Poisson homogeneous spaces of a compact Poisson–Lie group’, Mat. Fiz. Anal. Geom. 3(3–4) (1996), 274–289. MR1485682.Google Scholar
[Kas95] , Quantum Groups, Graduate Texts in Mathematics, vol. 155 (Springer-Verlag, New York, 1995). MR1321145 (96e:17041).Google Scholar | DOI
[Kna02] , Lie Groups Beyond an Introduction , second edn., Progress in Mathematics, vol. 140, (Birkhäuser Boston, Inc., Boston, MA, 2002). MR1920389.Google Scholar
[Koh87] , ‘Monodromy representations of braid groups and Yang–Baxter equations’, Ann. Inst. Fourier (Grenoble) 37(4) (1987), 139–160. MR927394 (89h:17030).Google Scholar | DOI
[Kol08] , ‘Quantum symmetric pairs and the reflection equation’, Algebr. Represent. Theory 11(6) (2008), 519–544. DOI:10.1007/s10468-008-9093-6. MR2453228.Google Scholar | DOI
[Kol14] , ‘Quantum symmetric Kac–Moody pairs’, Adv. Math. 267 (2014), 395–469. DOI:10.1016/j.aim.2014.08.010. MR3269184.Google Scholar | DOI
[Kol20] , ‘Braided module categories via quantum symmetric pairs’, Proc. Lond. Math. Soc. (3) 121(1) (2020), 1–31. DOI:10.1112/plms.12303. MR4048733.Google Scholar | DOI
[KS09] and , ‘Reflection equation algebras, coideal subalgebras, and their centres’, Selecta Math. (N.S.) 15(4) (2009), 621–664. DOI:10.1007/s00029-009-0007-1. MR2565052.Google Scholar | DOI
[Koo93] , ‘Askey–Wilson polynomials as zonal spherical functions on the quantum group’, SIAM J. Math. Anal. 24(3) (1993), 795–813. MR1215439 (94k:33042).Google Scholar | DOI
[Lei94] , ‘Some monodromy representations of generalized braid groups’, Comm. Math. Phys. 164(2) (1994), 293–304. MR1289327 (95k:52019).Google Scholar | DOI
[Let99] , ‘Symmetric pairs for quantized enveloping algebras’, J. Algebra 220(2) (1999), 729–767. MR1717368.Google Scholar | DOI
[Let00] , ‘Harish–Chandra modules for quantum symmetric pairs’, Represent. Theory 4 (2000), 64–96. DOI:10.1090/S1088-4165-00-00087-X. MR1742961.Google Scholar | DOI
[LV12] and , Algebraic Operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346 (Springer, Heidelberg, 2012). MR2954392.Google Scholar | DOI
[LW90] and , ‘Poisson Lie groups, dressing transformations, and Bruhat decompositions’, J. Differential Geom. 31(2) (1990), 501–526. MR1037412.Google Scholar | DOI
[Lus10] , Introduction to Quantum Groups, Modern Birkhäuser Classics (Birkhäuser/Springer, New York, 2010). DOI:10.1007/978-0-8176-4717-9. Reprint of the 1994 edition. MR2759715.Google Scholar
[Moo64] , ‘Compactifications of symmetric spaces. II. The Cartan domains’, Amer. J. Math. 86 (1964), 358–378. MR0161943.Google Scholar | DOI
[Mud02] , ‘Characters of -reflection equation algebra’, Lett. Math. Phys. 60(3) (2002), 283–291. DOI:10.1023/A:1016283527111. MR1917138.Google Scholar | DOI
[Nes14] , ‘Duality theory for nonergodic actions’, Münster J. Math. 7(2) (2014), 413–437. MR3426224.Google Scholar
[NT11] and , ‘Notes on the Kazhdan–Lusztig theorem on equivalence of the Drinfeld category and the category of -modules’, Algebr. Represent. Theory 14(5) (2011), 897–948. DOI:10.1007/s10468-010-9223-9. MR2832264 (2012j:17022).Google Scholar | DOI
[Nou96] , ‘Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces’, Adv. Math. 123(1) (1996), 16–77. DOI:10.1006/aima.1996.0066. MR1413836.Google Scholar | DOI
[OV90] and , Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics (Springer-Verlag, Berlin, 1990). DOI:10.1007/978-3-642-74334-4. Translated from the Russian and with a preface by D. A. Leites. MR1064110.Google Scholar | DOI
[Ost03] , ‘Module categories, weak Hopf algebras and modular invariants’, Transform. Groups 8(2) (2003), 177–206. DOI:10.1007/s00031-003-0515-6. MR1976459 (2004h:18006).Google Scholar | DOI
[Pod87] , ‘Quantum spheres’, Lett. Math. Phys. 14(3) (1987), 193–202. MR919322 (89b:46081).Google Scholar | DOI
[She91] , ‘Quantization of the Poisson and its Poisson homogeneous space—The -sphere’, Comm. Math. Phys. 135(2) (1991), 217–232. With an appendix by and . MR1087382 (91m:58011).Google Scholar | DOI
[Sto03] , ‘The quantum orbit method for generalized flag manifolds’, Math. Res. Lett. 10(4) (2003), 469–481. MR1995786 (2004e:20086).Google Scholar | DOI
[Tit66] , ‘Sur les constantes de structure et le théorème d’existence des algèbres de Lie semi-simples’, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 21–58. MR0214638.Google Scholar | DOI
[VD96] , Discrete quantum groups, J. Algebra 180(2) (1996), 431–444. MR1378538 (97a:16076).Google Scholar | DOI
[Wor87] , ‘Twisted group. An example of a noncommutative differential calculus’, Publ. Res. Inst. Math. Sci. 23(1) (1987), 117–181. MR890482 (88h:46130).Google Scholar | DOI
[Zus08] , ‘A converse to the second Whitehead lemma’, J. Lie Theory 18(2) (2008), 295–299. MR2431117.Google Scholar
Cité par Sources :
