Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$-close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$. The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
@article{10_1017_fmp_2023_1,
     author = {Otis Chodosh and Chao Li},
     title = {Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2023.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.1/}
}
TY  - JOUR
AU  - Otis Chodosh
AU  - Chao Li
TI  - Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.1/
DO  - 10.1017/fmp.2023.1
LA  - en
ID  - 10_1017_fmp_2023_1
ER  - 
%0 Journal Article
%A Otis Chodosh
%A Chao Li
%T Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.1/
%R 10.1017/fmp.2023.1
%G en
%F 10_1017_fmp_2023_1
Otis Chodosh; Chao Li. Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2023.1

[1] Allard, W. K., ‘An a priori estimate for the oscillation of the normal to a hypersurface whose first and second variation with respect to an elliptic integrand is controlled’, Invent. Math. 73(2) (1983), 287–331.Google Scholar | DOI

[2] Allard, W. K., ‘On the first variation of a varifold’, Ann. of Math. (2), 95 (1972), 417–491.Google Scholar | DOI

[3] Allard, W. K., ‘A characterization of the area integrand’, in Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Rome, 1973) (Academic Press, London, 1974), 429–444.Google Scholar

[4] Bombieri, E., De Giorgi, E. and Giusti, E.Minimal cones and the Bernstein problem’, Invent. Math. 7 (1969), 243–268.Google Scholar

[5] Brendle, S., ‘The isoperimetric inequality for a minimal submanifold in Euclidean space’, J. Amer. Math. Soc. 34(2) (2021), 595–603.Google Scholar | DOI

[6] Cao, H.-D., Shen, Y. and Zhu, S., ‘The structure of stable minimal hypersurfaces in ’, Math. Res. Lett. 4(5) (1997), 637–644.Google Scholar

[7] Cerf, R., ‘The Wulff crystal in Ising and percolation models’, in (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004. Lecture Notes in Mathematics vol. 1878 (Springer-Verlag, Berlin, 2006) xiv+264 pp. With a foreword by Jean Picard.Google Scholar

[8] Catino, G., Mastrolia, P. andRoncoroni, A., ‘Two rigidity results for stable minimal hypersurfaces’, Preprint, 2022, .Google Scholar | arXiv

[9] Chodosh, O. and Li, C., ‘Generalized soap bubbles and the topology of manifolds with positive scalar curvature’, Preprint, 2020, .Google Scholar | arXiv

[10] Chodosh, O. and Li, C., ‘Stable minimal hypersurfaces in ’, Preprint, 2021, .Google Scholar | arXiv

[11] Chodosh, O., Li, C. and Liokumovich, Y., ‘Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions’, Geom. Topo., 2021. To appear, .Google Scholar | arXiv

[12] Chodosh, O., Li, C. and Stryker, D., ‘Complete stable minimal hypersurfaces in positively curved 4-manifolds’, Preprint, 2022, https://arxiv.org/pdf/2202.07708.Google Scholar

[13] Cinti, E., Serra, J. and Valdinoci, E., ‘Quantitative flatness results and -estimates for stable nonlocal minimal surfaces’, J. Differential Geom. 112(3) (2019), 447–504.Google Scholar

[14] Colding, T. H. and Minicozzi Ii, W. P.Estimates for parametric elliptic integrands’, Int. Math. Res. Not. 2002(6) (2002), 291–297.Google Scholar

[15] De Philippis, G. and De Rosa, A., ‘The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces’, Preprint, 2022, .Google Scholar | arXiv

[16] De Philippis, G., De Rosa, A. and Ghiraldin, F., ‘Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies’, Comm. Pure Appl. Math. 71(6) (2018), 1123–1148.Google Scholar | DOI

[17] De Philippis, G., De Rosa, A. and Hirsch, J., ‘The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals’, Discrete Contin. Dyn. Syst. 39(12) (2019), 7031–7056.Google Scholar | DOI

[18] De Philippis, G. and Maggi, F., ‘Dimensional estimates for singular sets in geometric variational problems with free boundaries’, J. Reine Angew. Math. 725 (2017), 217–234.Google Scholar

[19] Do Carmo, M. and Peng, C. K., ‘Stable complete minimal surfaces in are planes’, Bull. Amer. Math. Soc. (N.S.) 1(6) (1979), 903–906.Google Scholar | DOI

[20] Federer, H., ‘Geometric measure theory’, in Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer-Verlag New York, Inc., New York, 1969), xiv+676 pp.Google Scholar

[21] Figalli, A., ‘Regularity of codimension-1 minimizing currents under minimal assumptions on the integrand’, J. Differential Geom. 106(3) (2017), 371–391.Google Scholar | DOI

[22] Figalli, A. and Serra, J., ‘On stable solutions for boundary reactions: A De Giorgi-type result in dimension ’, Invent. Math. 219(1) (2020), 153–177.Google Scholar | DOI

[23] Fischer-Colbrie, D. and Schoen, R., ‘The structure of complete stable minimal surfaces in -manifolds of nonnegative scalar curvature’, Comm. Pure Appl. Math. 33(2) (1980), 199–211.Google Scholar | DOI

[24] Gromov, M., ‘Positive curvature, macroscopic dimension, spectral gaps and higher signatures’, in Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) Progress in Mathematics vol. 132 (Birkhäuser Boston, Boston, MA, 1996), 1–213.Google Scholar

[25] Gromov, M., ‘Metric inequalities with scalar curvature. Geom’, Funct. Anal. 28(3) (2018), 645–726.Google Scholar | DOI

[26] Gromov, M., ‘No metrics with positive scalar curvatures on aspherical 5-manifolds’, Preprint, 2020, .Google Scholar | arXiv

[27] Gulliver, R. and Lawson, H. B. Jr., ‘The structure of stable minimal hypersurfaces near a singularity’, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), Proceedings of Symposia in Pure Mathematics vol. 44 (American Mathematical Society, Providence, RI, 1986), 213–237.Google Scholar

[28] Hardt, R. and Simon, L., ‘Nodal sets for solutions of elliptic equations’, J. Differential Geom. 30(2) (1989), 505–522.Google Scholar

[29] Jenkins, H. B., ‘On two-dimensional variational problems in parametric form’, Arch. Rational. Mech. Anal. 8 (1961), 181–206.Google Scholar | DOI

[30] Lin, F.-H., ‘Estimates for surfaces which are stationary for an elliptic parametric integral’, J. Partial Differential Equations 3(3) (1990), 78–92.Google Scholar

[31] Meeks, W. W. Iii and Yau, S. T., ‘The existence of embedded minimal surfaces and the problem of uniqueness’, Math. Z. 179(2) (1982), 151–168.Google Scholar

[32] Michael, J. H. and Simon, L. M., ‘Sobolev and mean-value inequalities on generalized submanifolds of ’, Comm. Pure Appl. Math. 26 (1973), 361–379.Google Scholar

[33] Mooney, C., ‘Entire solutions to equations of minimal surface type in six dimensions’, J. Eur. Math. Soc. (JEMS) 24(12) (2022), 4353–4361.Google Scholar

[34] Mooney, C. and Yang, Y., ‘A proof by foliation that Lawson’s cones are -minimizing’, Discrete Contin. Dyn. Syst. 41(11) (2021), 5291–5302.Google Scholar | DOI

[35] Morgan, F., ‘The cone over the Clifford torus in is -minimizing’, Math. Ann. 289(2) (1991), 341–354.Google Scholar

[36] Munteanu, O., Sung, C.-J. A. and Wang, J., ‘Area and spectrum estimates for stable minimal surfaces’, J. Geom. Anal. 33(2) (2023), Paper No. 40.Google Scholar | DOI

[37] Munteanu, O. and Wang, J., ‘Comparison theorems for three-dimensional manifolds with scalar curvature bound’, Preprint, 2021, , 2021. To appear in Int. Math. Res. Not.Google Scholar | arXiv

[38] Munteanu, O. and Wang, J., ‘Comparison theorems for 3D manifolds with scalar curvature bound, II’, Preprint, 2022, .Google Scholar | arXiv | DOI

[39] Pogorelov, A. V., ‘On the stability of minimal surfaces’, Soviet Math. Dokl. 24 (1981), 274–276.Google Scholar

[40] Schoen, R., Simon, L. and Almgren, F. J. Jr., ‘Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II’, Acta Math. 139(3–4) (1977), 217–265.Google Scholar | DOI

[41] Schoen, R., Simon, L. and Yau, S. T., ‘Curvature estimates for minimal hypersurfaces’, Acta Math. 134(3–4) (1975), 275–288.Google Scholar | DOI

[42] Schoen, R., ‘Estimates for stable minimal surfaces in three-dimensional manifolds’, in Seminar on minimal submanifolds, Annals of Mathematics Studies vol. 103 (Princeton University Press, Princeton, NJ, 1983), 111–126.Google Scholar

[43] Schoen, R. and Simon, L., ‘Regularity of stable minimal hypersurfaces’, Comm. Pure Appl. Math. 34(6) (1981), 741–797.Google Scholar | DOI

[44] Schoen, R. and Simon, L., ‘A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals’, Indiana Univ. Math. J. 31(3) (1982), 415–434.Google Scholar | DOI

[45] Schoen, R. and Yau, S. T., ‘Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature’, Comment. Math. Helv. 51(3) (1976), 333–341.Google Scholar | DOI

[46] Simon, L., ‘On some extensions of Bernstein’s theorem’, Math. Z. 154(3) (1977), 265–273.Google Scholar | DOI

[47] Simons, J., ‘Minimal varieties in Riemannian manifolds’, Ann. of Math. (2) 88 (1968), 62–105.Google Scholar

[48] White, B., ‘Curvature estimates and compactness theorems in -manifolds for surfaces that are stationary for parametric elliptic functionals’, Invent. Math. 88(2) (1987), 243–256.Google Scholar

[49] White, B., ‘The space of -dimensional surfaces that are stationary for a parametric elliptic functional’, Indiana Univ. Math. J. 36(3) (1987), 567–602.Google Scholar | DOI

[50] White, B., ‘Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on -manifolds’, J. Differential Geom. 33(2) (1991), 413–443.Google Scholar

[51] White, B., ‘Introduction to minimal surface theory’, in Geometric analysis, IAS/Park City Mathematics Series vol. 22 (American Mathematical Society, Providence, RI, 2016), 387–438.Google Scholar

[52] Wickramasekera, N., ‘A general regularity theory for stable codimension 1 integral varifolds’, Ann. of Math. (2) 179(3) (2014), 843–1007.Google Scholar

[53] Winklmann, S., ‘Pointwise curvature estimates for -stable hypersurfaces’, Ann. Inst. H. Poincaré C Anal. Non Linéaire 22(5) (2005), 543–555.Google Scholar | DOI

[54] Winklmann, S., ‘A note on the stability of the Wulff shape’, Arch. Math. (Basel) 87(3) (2006), 272–279.Google Scholar

[55] Zhu, J., ‘Rigidity results for complete manifolds of non-negative scalar curvature’, Preprint, 2020, .Google Scholar | arXiv

[56] Zhu, J., ‘Width estimate and doubly warped product’, Trans. Amer. Math. Soc. 374(2) (2021), 1497–1511.Google Scholar | DOI

Cité par Sources :