Almost all orbits of the Collatz map attain almost bounded values
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Define the Collatz map ${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$ on the positive integers $\mathbb {N}+1 = \{1,2,3,\dots \}$ by setting ${\operatorname {Col}}(N)$ equal to $3N+1$ when N is odd and $N/2$ when N is even, and let ${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$ denote the minimal element of the Collatz orbit $N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $. The infamous Collatz conjecture asserts that ${\operatorname {Col}}_{\min }(N)=1$ for all $N \in \mathbb {N}+1$. Previously, it was shown by Korec that for any $\theta> \frac {\log 3}{\log 4} \approx 0.7924$, one has ${\operatorname {Col}}_{\min }(N) \leq N^\theta $ for almost all $N \in \mathbb {N}+1$ (in the sense of natural density). In this paper, we show that for any function $f \colon \mathbb {N}+1 \to \mathbb {R}$ with $\lim _{N \to \infty } f(N)=+\infty $, one has ${\operatorname {Col}}_{\min }(N) \leq f(N)$ for almost all $N \in \mathbb {N}+1$ (in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a $3$-adic cyclic group $\mathbb {Z}/3^n\mathbb {Z}$ at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.
@article{10_1017_fmp_2022_8,
     author = {Terence Tao},
     title = {Almost all orbits of the {Collatz} map attain almost bounded values},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.8/}
}
TY  - JOUR
AU  - Terence Tao
TI  - Almost all orbits of the Collatz map attain almost bounded values
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.8/
DO  - 10.1017/fmp.2022.8
LA  - en
ID  - 10_1017_fmp_2022_8
ER  - 
%0 Journal Article
%A Terence Tao
%T Almost all orbits of the Collatz map attain almost bounded values
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.8/
%R 10.1017/fmp.2022.8
%G en
%F 10_1017_fmp_2022_8
Terence Tao. Almost all orbits of the Collatz map attain almost bounded values. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.8

[1] Allouche, J.-P., Sur la conjecture de “Syracuse-Kakutani-Collatz”, Séminaire de Théorie des Nombres, 1978–1979, Exp. No. 9, 15 pp., CNRS, Talence, 1979.Google Scholar

[2] Baker, A., Linear forms in the logarithms of algebraic numbers. I , Mathematika. A Journal of Pure and Applied Mathematics, 13 (1966), 204–216.Google Scholar

[3] Barina, D., Convergence verification of the Collatz problem , The Journal of Supercomputing, 2020.Google Scholar

[4] Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures , Comm. Math. Phys. 166 (1994), 1–26.Google Scholar | DOI

[5] Carletti, T., Fanelli, D., Quantifying the degree of average contraction of Collatz orbits , Boll. Unione Mat. Ital. 11 (2018), 445–468.Google Scholar | DOI

[6] Chamberland, M., A survey: number theory and dynamical systems, The ultimate challenge: the problem, 57–78, Amer. Math. Soc., Providence, RI, 2010.Google Scholar

[7] Crandall, R. E., On theproblem , Math. Comp. 32 (1978), 1281–1292.Google Scholar

[8] Everett, C. J., Iteration of the number-theoretic function , , Adv. Math. 25 (1977), no. 1, 42–45.Google Scholar | DOI

[9] Korec, I., A density estimate for the problem , Math. Slovaca 44 (1994), no. 1, 85–89.Google Scholar

[10] Kontorovich, A., Lagarias, J., Stochastic models for the and problems and related problems, The ultimate challenge: the problem, 131–188, Amer. Math. Soc., Providence, RI, 2010.Google Scholar

[11] Kontorovich, A., Miller, S. J., Benford’s law, values of -functions and the problem , Acta Arith. 120 (2005), no. 3, 269–297.Google Scholar | DOI

[12] Kontorovich, A. V., Sinai, Ya. G., Structure theorem for -maps , Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 213–224.Google Scholar | DOI

[13] Krasikov, I., Lagarias, J., Bounds for the problem using difference inequalities , Acta Arith. 109 (2003), 237–258.Google Scholar | DOI

[14] Lagarias, J., The 3x+1 problem and its generalizations , Amer. Math. Monthly 92 (1985), no. 1, 3–23.Google Scholar | DOI

[15] Lagarias, J., Soundararajan, K., Benford’s law for the function , J. London Math. Soc. (2) 74 (2006), no. 2, 289–303.Google Scholar | DOI

[16] Lagarias, J., Weiss, A., The problem: two stochastic models , Ann. Appl. Probab. 2 (1992), no. 1, 229–261.Google Scholar | DOI

[17] Oliveira E Silva, T., Empirical verification of the 3x+1 and related conjectures , The ultimate challenge: the problem, 189–207, Amer. Math. Soc., Providence, RI, 2010.Google Scholar

[18] Roosendaal, E., www.ericr.nl/wondrous.Google Scholar

[19] Sinai, Ya. G., Statistical problem , Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56 (2003), no. 7, 1016–1028.Google Scholar | DOI

[20] Tao, T., The logarithmically averaged Chowla and Elliott conjectures for two-point correlations , Forum Math. Pi 4 (2016), e8, 36 pp.Google Scholar | DOI

[21] Terras, R., A stopping time problem on the positive integers , Acta Arith. 30 (1976), 241–252.Google Scholar | DOI

[22] Terras, R., On the existence of a density , Acta Arith. 35 (1979), 101–102.Google Scholar | DOI

[23] Thomas, A., A non-uniform distribution property of most orbits, in case the conjecture is true , Acta Arith. 178 (2017), no. 2, 125–134.Google Scholar | DOI

[24] Wirsching, G., The Dynamical System Generated by the Function, Lecture Notes in Math. No. 1681, Springer-Verlag: Berlin 1998.Google Scholar

Cité par Sources :