Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_8,
author = {Terence Tao},
title = {Almost all orbits of the {Collatz} map attain almost bounded values},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.8/}
}
Terence Tao. Almost all orbits of the Collatz map attain almost bounded values. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.8
[1] , Sur la conjecture de “Syracuse-Kakutani-Collatz”, Séminaire de Théorie des Nombres, 1978–1979, Exp. No. 9, 15 pp., CNRS, Talence, 1979.Google Scholar
[2] , Linear forms in the logarithms of algebraic numbers. I , Mathematika. A Journal of Pure and Applied Mathematics, 13 (1966), 204–216.Google Scholar
[3] , Convergence verification of the Collatz problem , The Journal of Supercomputing, 2020.Google Scholar
[4] , Periodic nonlinear Schrödinger equation and invariant measures , Comm. Math. Phys. 166 (1994), 1–26.Google Scholar | DOI
[5] , , Quantifying the degree of average contraction of Collatz orbits , Boll. Unione Mat. Ital. 11 (2018), 445–468.Google Scholar | DOI
[6] , A survey: number theory and dynamical systems, The ultimate challenge: the problem, 57–78, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
[7] , On the ‘’ problem , Math. Comp. 32 (1978), 1281–1292.Google Scholar
[8] , Iteration of the number-theoretic function , , Adv. Math. 25 (1977), no. 1, 42–45.Google Scholar | DOI
[9] , A density estimate for the problem , Math. Slovaca 44 (1994), no. 1, 85–89.Google Scholar
[10] , , Stochastic models for the and problems and related problems, The ultimate challenge: the problem, 131–188, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
[11] , , Benford’s law, values of -functions and the problem , Acta Arith. 120 (2005), no. 3, 269–297.Google Scholar | DOI
[12] , , Structure theorem for -maps , Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 213–224.Google Scholar | DOI
[13] , , Bounds for the problem using difference inequalities , Acta Arith. 109 (2003), 237–258.Google Scholar | DOI
[14] , The 3x+1 problem and its generalizations , Amer. Math. Monthly 92 (1985), no. 1, 3–23.Google Scholar | DOI
[15] , , Benford’s law for the function , J. London Math. Soc. (2) 74 (2006), no. 2, 289–303.Google Scholar | DOI
[16] , , The problem: two stochastic models , Ann. Appl. Probab. 2 (1992), no. 1, 229–261.Google Scholar | DOI
[17] , Empirical verification of the 3x+1 and related conjectures , The ultimate challenge: the problem, 189–207, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
[18] , www.ericr.nl/wondrous.Google Scholar
[19] , Statistical problem , Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56 (2003), no. 7, 1016–1028.Google Scholar | DOI
[20] , The logarithmically averaged Chowla and Elliott conjectures for two-point correlations , Forum Math. Pi 4 (2016), e8, 36 pp.Google Scholar | DOI
[21] , A stopping time problem on the positive integers , Acta Arith. 30 (1976), 241–252.Google Scholar | DOI
[22] , On the existence of a density , Acta Arith. 35 (1979), 101–102.Google Scholar | DOI
[23] , A non-uniform distribution property of most orbits, in case the conjecture is true , Acta Arith. 178 (2017), no. 2, 125–134.Google Scholar | DOI
[24] , The Dynamical System Generated by the Function, Lecture Notes in Math. No. 1681, Springer-Verlag: Berlin 1998.Google Scholar
Cité par Sources :