On the Kottwitz conjecture for local shtuka spaces
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of $\operatorname {\mathrm {GL}}_n$, the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.
@article{10_1017_fmp_2022_7,
     author = {David Hansen and Tasho Kaletha and Jared Weinstein},
     title = {On the {Kottwitz} conjecture for local shtuka spaces},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.7/}
}
TY  - JOUR
AU  - David Hansen
AU  - Tasho Kaletha
AU  - Jared Weinstein
TI  - On the Kottwitz conjecture for local shtuka spaces
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.7/
DO  - 10.1017/fmp.2022.7
LA  - en
ID  - 10_1017_fmp_2022_7
ER  - 
%0 Journal Article
%A David Hansen
%A Tasho Kaletha
%A Jared Weinstein
%T On the Kottwitz conjecture for local shtuka spaces
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.7/
%R 10.1017/fmp.2022.7
%G en
%F 10_1017_fmp_2022_7
David Hansen; Tasho Kaletha; Jared Weinstein. On the Kottwitz conjecture for local shtuka spaces. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.7

[BDK86] Bernstein, J., Deligne, P. and Kazhdan, D., ‘Trace Paley–Wiener theorem for reductive -adic groups’, J. Analyse Math. 47 (1986), 180–192. MR 874050Google Scholar

[BS17] Bhatt, B. and Scholze, P., ‘Projectivity of the Witt vector affine Grassmannian’, Invent. Math. 209(2) (2017), 329–423. MR 3674218Google Scholar | DOI

[BT72] Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local’, Inst. Hautes Études Sci . Publ. Math. 41 (1972), 5–251.Google Scholar | DOI

[BT84] Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée’, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376.Google Scholar

[BW00] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 67 (American Mathematical Society, Providence, RI, 2000). MR 1721403Google Scholar | DOI

[CFS21] Chen, M., Fargues, L. and Shen, X., ‘On the structure of some -adic period domains’, Camb. J. Math. 9(1) (2021), 213–267. MR 4325262Google Scholar | DOI

[CS17] Caraiani, A. and Scholze, P., ‘On the generic part of the cohomology of compact unitary Shimura varieties’, Ann. of Math. (2) 186 (2017), 649–766. MR 3702677Google Scholar | DOI

[Dat00] Dat, J.-F., ‘On the of a -adic group’, Invent. Math. 140(1) (2000), 171–226. MR 1779801Google Scholar | DOI

[Dat05] Dat, J.-F., ‘-tempered representations of -adic groups. I. -adic case’, Duke Math. J. 126(3) (2005), 397–469. MR 2120114Google Scholar | DOI

[DKV84] Deligne, P., Kazhdan, D. and Vignéras, M.-F., ‘Représentations des algèbres centrales simples -adiques’, In Representations of Reductive Groups over a Local Field, (Hermann, Paris, 1984), 33–117. MR 771672Google Scholar

[Fal94] Faltings, G., ‘The trace formula and Drinfeld’s upper halfplane’, Duke Math. J. 76(2) (1994), 467–481.Google Scholar | DOI

[Far] Fargues, L., ‘Geometrization of the local Langlands correspondence : An overview’, Preprint, .Google Scholar | arXiv

[Far20] Fargues, L., ‘-torseurs en théorie de Hodge -adique’, Compos. Math. 156(10) (2020), 2076–2110. MR 4179595Google Scholar | DOI

[FF18] Fargues, L. and Fontaine, J.-M., ‘Courbes et fibrés vectoriels en théorie de Hodge -adique’, Astérisque 406 (2018), xiii+382, With a preface by Pierre Colmez. MR 3917141Google Scholar

[FKS19] Fintzen, J., Kaletha, T. and Spice, L., ‘A twisted Yu construction, Harish–Chandra characters, and endoscopy’, Preprint, 2019, .Google Scholar | arXiv

[FS21] Fargues, L. and Scholze, P., ‘Geometrization of the local Langlands correspondence’, Preprint, 2021.Google Scholar

[GHW22] Gulotta, D., Hansen, D. and Weinstein, J., ‘An enhanced six-functor formalism for diamonds and v-stacks’, Preprint, 2022, .Google Scholar | arXiv

[Har15] Harris, M., Mathematics without Apologies: Portrait of a Problematic Vocation, Science Essentials, (Princeton University Press, Princeton, NJ, 2015).Google Scholar

[Ima] Imai, N., ‘Convolution morphisms and Kottwitz conjecture’, Preprint, .Google Scholar | arXiv

[Kal13] Kaletha, T., ‘Genericity and contragredience in the local Langlands correspondence’, Algebra Number Theory 7(10) (2013), 2447–2474.Google Scholar | DOI

[Kal14] Kaletha, T., ‘Supercuspidal -packets via isocrystals’, Amer. J. Math. 136(1) (2014), 203–239.Google Scholar | DOI

[Kal16a] Kaletha, T., ‘The local Langlands conjectures for non-quasi-split groups , In Families of Automorphic Forms and the Trace Formula, Simons Symp. (Springer, 2016), 217–257. MR 3675168Google Scholar

[Kal16b] Kaletha, T., ‘Rigid inner forms of real and -adic groups’, Ann. of Math. (2) 184(2) (2016), 559–632. MR 3548533Google Scholar | DOI

[Kal18] Kaletha, T., ‘Rigid inner forms vs isocrystals’, J. Eur. Math. Soc. (JEMS) 20(1) (2018), 61–101. MR 3743236Google Scholar | DOI

[Kal19a] Kaletha, T., ‘Regular supercuspidal representations’, J. Amer. Math. Soc. 32(4) (2019), 1071–1170. MR 4013740Google Scholar | DOI

[Kal19b] Kaletha, T., ‘Supercuspidal -packets’, Preprint, (2019).Google Scholar | arXiv

[Kaz86] Kazhdan, D., ‘Cuspidal geometry of -adic groups’, J. Analyse Math. 47 (1986), 1–36. MR 874042Google Scholar | DOI

[Kot] Kottwitz, R. E., ‘for all local and global fields’, Preprint, 2014, .Google Scholar | arXiv

[Kot83] Kottwitz, R. E., ‘Sign changes in harmonic analysis on reductive groups’, Trans. Amer. Math. Soc. 278(1) (1983), 289–297.Google Scholar | DOI

[Kot84a] Kottwitz, R. E., ‘Shimura varieties and twisted orbital integrals’, Math. Ann. 269(3) (1984), 287–300.Google Scholar | DOI

[Kot84b] Kottwitz, R. E., ‘Stable trace formula: Cuspidal tempered terms’, Duke Math. J. 51(3) (1984), 611–650.Google Scholar | DOI

[Kot85] Kottwitz, R. E., ‘Isocrystals with additional structure’, Compositio Math. 56(2) (1985), 201–220.Google Scholar

[Kot86] Kottwitz, R. E., ‘Stable trace formula: Elliptic singular terms’, Math. Ann. 275(3) (1986), 365–399.Google Scholar | DOI

[Kot97] Kottwitz, R. E., ‘Isocrystals with additional structure. II’, Compositio Math. 109(3) (1997), 255–339.Google Scholar | DOI

[KS99] Kottwitz, R. E. and Shelstad, D., ‘Foundations of twisted endoscopy’, Astérisque (1999), vi+190.Google Scholar

[LZ] Liu, Y. and Zheng, W., ‘Enhanced six operations and base change theorem for higher Artin stacks’, .Google Scholar | arXiv

[LZ22] Lu, Q. and Zheng, W., ‘Categorical traces and a relative Lefschetz–Verdier formula’, Forum Math. Sigma 10 (2022), Paper No. e10, 24. MR 4377268Google Scholar | DOI

[Man04] Mantovan, E., ‘On certain unitary group Shimura varieties’, Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales, 291 (2004), 201–331. MR 2074715Google Scholar

[Mie] Mieda, Y., ‘Lefschetz trace formula and -adic cohomology of Rapoport–Zink tower for GSp(4)’, Preprint, .Google Scholar | arXiv

[Mie12] Mieda, Y., ‘Lefschetz trace formula and -adic cohomology of Lubin-Tate tower’, Math. Res. Lett. 19(1) (2012), 95–107.Google Scholar | DOI

[Mie14a] Mieda, Y., ‘Geometric approach to the local Jacquet–Langlands correspondence’, Amer. J. Math. 136(4) (2014), 1067–1091.Google Scholar | DOI

[Mie14b] Mieda, Y., ‘Lefschetz trace formula for open adic spaces’, J. Reine Angew. Math. 694 (2014), 85–128.Google Scholar

[Rap95] Rapoport, M., ‘Non-Archimedean period domains’, In Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 1, 2 (Birkhäuser, Basel, 1995), 423–434.Google Scholar

[RV14] Rapoport, M. and Viehmann, E., ‘Towards a theory of local Shimura varieties’, Münster J. Math. 7(1) (2014), 273–326.Google Scholar

[RZ96] Rapoport, M. and Zink, T., ‘Period spaces for -divisible groups’, In Annals of Mathematics Studies, Vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar

[Sch17] Scholze, P., ‘Étale cohomology of diamonds’, Preprint, 2017.Google Scholar | DOI

[SGA77] Cohomologie -adique et fonctions , Lecture Notes in Mathematics, Vol. 589 (Springer-Verlag, Berlin-New York, 1977), Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie.Google Scholar

[She14] Shen, X., ‘Cell decomposition of some unitary group Rapoport–Zink spaces’, Math. Ann. 360 (2014), 825–899.Google Scholar | DOI

[Shi11] Shin, S. W., ‘Galois representations arising from some compact Shimura varieties’, Ann. of Math. (2) 173(3) (2011), 1645–1741. MR 2800722Google Scholar | DOI

[Shi12] Shin, S. W., ‘On the cohomology of Rapoport–Zink spaces of EL-type’, Amer. J. Math. 134(2) (2012), 407–452. MR 2905002Google Scholar | DOI

[Sta21] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2021.Google Scholar

[Ste65] Steinberg, R., ‘Regular elements of semisimple algebraic groups’, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80.Google Scholar | DOI

[Str05] Strauch, M., ‘On the Jacquet–Langlands correspondence in the cohomology of the Lubin-Tate deformation tower’, Astérisque 298 (2005), 391–410, Automorphic forms, I.Google Scholar

[Str08] Strauch, M., ‘Deformation spaces of one-dimensional formal modules and their cohomology’, Adv. Math. 217(3) (2008), 889–951.Google Scholar | DOI

[SW13] Scholze, P. and Weinstein, J., ‘Moduli of -divisible groups’, Camb. J. Math. 1(2) (2013), 145–237.Google Scholar | DOI

[SW20] Scholze, P. and Weinstein, J., Berkeley Lectures on -Adic Geometry, Annals of Math. Studies, No. 207, (Princeton University Press, Princeton, NJ, 2020).Google Scholar

[Tit79] Tits, J., Reductive Groups over Local Fields, Automorphic Forms, Representations and -Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., Vol. XXXIII (Amer. Math. Soc., Providence, R.I., 1979), 29–69.Google Scholar

[Var07] Varshavsky, Y., ‘Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara’, Geom. Funct. Anal. 17(1) (2007), 271–319.Google Scholar | DOI

[Var20] Varshavsky, Y., ‘Local terms for transversal intersections’, Preprint, 2020, .Google Scholar | arXiv

[vD72] Van Dijk, G., ‘Computation of certain induced characters of -adic groups’, Math. Ann. 199 (1972), 229–240. MR 338277Google Scholar | DOI

[Vig96] Vignéras, M.-France, Représentations -modulaires d’un groupe réductif -adique avec , Progress in Mathematics, Vol. 137 (Birkhäuser Boston, Inc., Boston, MA, 1996). MR 1395151Google Scholar

[Vig04] Vignéras, M.-F., On Highest Whittaker Models and Integral Structures, Contributions to Automorphic Forms, Geometry, and Number Theory, (Johns Hopkins Univ. Press, Baltimore, MD, 2004), 773–801. MR 2058628Google Scholar

[Yu19] Yu, J., ‘The integral geometric Satake equivalence in mixed characteristic’, Preprint, 2019, .Google Scholar | arXiv

Cité par Sources :