Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_7,
author = {David Hansen and Tasho Kaletha and Jared Weinstein},
title = {On the {Kottwitz} conjecture for local shtuka spaces},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.7/}
}
TY - JOUR AU - David Hansen AU - Tasho Kaletha AU - Jared Weinstein TI - On the Kottwitz conjecture for local shtuka spaces JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.7/ DO - 10.1017/fmp.2022.7 LA - en ID - 10_1017_fmp_2022_7 ER -
David Hansen; Tasho Kaletha; Jared Weinstein. On the Kottwitz conjecture for local shtuka spaces. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.7
[BDK86] , and , ‘Trace Paley–Wiener theorem for reductive -adic groups’, J. Analyse Math. 47 (1986), 180–192. MR 874050Google Scholar
[BS17] and , ‘Projectivity of the Witt vector affine Grassmannian’, Invent. Math. 209(2) (2017), 329–423. MR 3674218Google Scholar | DOI
[BT72] and , ‘Groupes réductifs sur un corps local’, Inst. Hautes Études Sci . Publ. Math. 41 (1972), 5–251.Google Scholar | DOI
[BT84] and , ‘Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée’, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376.Google Scholar
[BW00] and , Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 67 (American Mathematical Society, Providence, RI, 2000). MR 1721403Google Scholar | DOI
[CFS21] , and , ‘On the structure of some -adic period domains’, Camb. J. Math. 9(1) (2021), 213–267. MR 4325262Google Scholar | DOI
[CS17] and , ‘On the generic part of the cohomology of compact unitary Shimura varieties’, Ann. of Math. (2) 186 (2017), 649–766. MR 3702677Google Scholar | DOI
[Dat00] , ‘On the of a -adic group’, Invent. Math. 140(1) (2000), 171–226. MR 1779801Google Scholar | DOI
[Dat05] , ‘-tempered representations of -adic groups. I. -adic case’, Duke Math. J. 126(3) (2005), 397–469. MR 2120114Google Scholar | DOI
[DKV84] , and , ‘Représentations des algèbres centrales simples -adiques’, In Representations of Reductive Groups over a Local Field, (Hermann, Paris, 1984), 33–117. MR 771672Google Scholar
[Fal94] , ‘The trace formula and Drinfeld’s upper halfplane’, Duke Math. J. 76(2) (1994), 467–481.Google Scholar | DOI
[Far] , ‘Geometrization of the local Langlands correspondence : An overview’, Preprint, .Google Scholar | arXiv
[Far20] , ‘-torseurs en théorie de Hodge -adique’, Compos. Math. 156(10) (2020), 2076–2110. MR 4179595Google Scholar | DOI
[FF18] and , ‘Courbes et fibrés vectoriels en théorie de Hodge -adique’, Astérisque 406 (2018), xiii+382, With a preface by Pierre Colmez. MR 3917141Google Scholar
[FKS19] , and , ‘A twisted Yu construction, Harish–Chandra characters, and endoscopy’, Preprint, 2019, .Google Scholar | arXiv
[FS21] and , ‘Geometrization of the local Langlands correspondence’, Preprint, 2021.Google Scholar
[GHW22] , and , ‘An enhanced six-functor formalism for diamonds and v-stacks’, Preprint, 2022, .Google Scholar | arXiv
[Har15] , Mathematics without Apologies: Portrait of a Problematic Vocation, Science Essentials, (Princeton University Press, Princeton, NJ, 2015).Google Scholar
[Ima] , ‘Convolution morphisms and Kottwitz conjecture’, Preprint, .Google Scholar | arXiv
[Kal13] , ‘Genericity and contragredience in the local Langlands correspondence’, Algebra Number Theory 7(10) (2013), 2447–2474.Google Scholar | DOI
[Kal14] , ‘Supercuspidal -packets via isocrystals’, Amer. J. Math. 136(1) (2014), 203–239.Google Scholar | DOI
[Kal16a] , ‘The local Langlands conjectures for non-quasi-split groups ’, In Families of Automorphic Forms and the Trace Formula, Simons Symp. (Springer, 2016), 217–257. MR 3675168Google Scholar
[Kal16b] , ‘Rigid inner forms of real and -adic groups’, Ann. of Math. (2) 184(2) (2016), 559–632. MR 3548533Google Scholar | DOI
[Kal18] , ‘Rigid inner forms vs isocrystals’, J. Eur. Math. Soc. (JEMS) 20(1) (2018), 61–101. MR 3743236Google Scholar | DOI
[Kal19a] , ‘Regular supercuspidal representations’, J. Amer. Math. Soc. 32(4) (2019), 1071–1170. MR 4013740Google Scholar | DOI
[Kal19b] , ‘Supercuspidal -packets’, Preprint, (2019).Google Scholar | arXiv
[Kaz86] , ‘Cuspidal geometry of -adic groups’, J. Analyse Math. 47 (1986), 1–36. MR 874042Google Scholar | DOI
[Kot] , ‘for all local and global fields’, Preprint, 2014, .Google Scholar | arXiv
[Kot83] , ‘Sign changes in harmonic analysis on reductive groups’, Trans. Amer. Math. Soc. 278(1) (1983), 289–297.Google Scholar | DOI
[Kot84a] , ‘Shimura varieties and twisted orbital integrals’, Math. Ann. 269(3) (1984), 287–300.Google Scholar | DOI
[Kot84b] , ‘Stable trace formula: Cuspidal tempered terms’, Duke Math. J. 51(3) (1984), 611–650.Google Scholar | DOI
[Kot85] , ‘Isocrystals with additional structure’, Compositio Math. 56(2) (1985), 201–220.Google Scholar
[Kot86] , ‘Stable trace formula: Elliptic singular terms’, Math. Ann. 275(3) (1986), 365–399.Google Scholar | DOI
[Kot97] , ‘Isocrystals with additional structure. II’, Compositio Math. 109(3) (1997), 255–339.Google Scholar | DOI
[KS99] and , ‘Foundations of twisted endoscopy’, Astérisque (1999), vi+190.Google Scholar
[LZ] and , ‘Enhanced six operations and base change theorem for higher Artin stacks’, .Google Scholar | arXiv
[LZ22] and , ‘Categorical traces and a relative Lefschetz–Verdier formula’, Forum Math. Sigma 10 (2022), Paper No. e10, 24. MR 4377268Google Scholar | DOI
[Man04] , ‘On certain unitary group Shimura varieties’, Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales, 291 (2004), 201–331. MR 2074715Google Scholar
[Mie] , ‘Lefschetz trace formula and -adic cohomology of Rapoport–Zink tower for GSp(4)’, Preprint, .Google Scholar | arXiv
[Mie12] , ‘Lefschetz trace formula and -adic cohomology of Lubin-Tate tower’, Math. Res. Lett. 19(1) (2012), 95–107.Google Scholar | DOI
[Mie14a] , ‘Geometric approach to the local Jacquet–Langlands correspondence’, Amer. J. Math. 136(4) (2014), 1067–1091.Google Scholar | DOI
[Mie14b] , ‘Lefschetz trace formula for open adic spaces’, J. Reine Angew. Math. 694 (2014), 85–128.Google Scholar
[Rap95] , ‘Non-Archimedean period domains’, In Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 1, 2 (Birkhäuser, Basel, 1995), 423–434.Google Scholar
[RV14] and , ‘Towards a theory of local Shimura varieties’, Münster J. Math. 7(1) (2014), 273–326.Google Scholar
[RZ96] and , ‘Period spaces for -divisible groups’, In Annals of Mathematics Studies, Vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
[Sch17] , ‘Étale cohomology of diamonds’, Preprint, 2017.Google Scholar | DOI
[SGA77] Cohomologie -adique et fonctions , Lecture Notes in Mathematics, Vol. 589 (Springer-Verlag, Berlin-New York, 1977), Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie.Google Scholar
[She14] , ‘Cell decomposition of some unitary group Rapoport–Zink spaces’, Math. Ann. 360 (2014), 825–899.Google Scholar | DOI
[Shi11] , ‘Galois representations arising from some compact Shimura varieties’, Ann. of Math. (2) 173(3) (2011), 1645–1741. MR 2800722Google Scholar | DOI
[Shi12] , ‘On the cohomology of Rapoport–Zink spaces of EL-type’, Amer. J. Math. 134(2) (2012), 407–452. MR 2905002Google Scholar | DOI
[Sta21] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2021.Google Scholar
[Ste65] , ‘Regular elements of semisimple algebraic groups’, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80.Google Scholar | DOI
[Str05] , ‘On the Jacquet–Langlands correspondence in the cohomology of the Lubin-Tate deformation tower’, Astérisque 298 (2005), 391–410, Automorphic forms, I.Google Scholar
[Str08] , ‘Deformation spaces of one-dimensional formal modules and their cohomology’, Adv. Math. 217(3) (2008), 889–951.Google Scholar | DOI
[SW13] and , ‘Moduli of -divisible groups’, Camb. J. Math. 1(2) (2013), 145–237.Google Scholar | DOI
[SW20] and , Berkeley Lectures on -Adic Geometry, Annals of Math. Studies, No. 207, (Princeton University Press, Princeton, NJ, 2020).Google Scholar
[Tit79] , Reductive Groups over Local Fields, Automorphic Forms, Representations and -Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., Vol. XXXIII (Amer. Math. Soc., Providence, R.I., 1979), 29–69.Google Scholar
[Var07] , ‘Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara’, Geom. Funct. Anal. 17(1) (2007), 271–319.Google Scholar | DOI
[Var20] , ‘Local terms for transversal intersections’, Preprint, 2020, .Google Scholar | arXiv
[vD72] , ‘Computation of certain induced characters of -adic groups’, Math. Ann. 199 (1972), 229–240. MR 338277Google Scholar | DOI
[Vig96] , Représentations -modulaires d’un groupe réductif -adique avec , Progress in Mathematics, Vol. 137 (Birkhäuser Boston, Inc., Boston, MA, 1996). MR 1395151Google Scholar
[Vig04] , On Highest Whittaker Models and Integral Structures, Contributions to Automorphic Forms, Geometry, and Number Theory, (Johns Hopkins Univ. Press, Baltimore, MD, 2004), 773–801. MR 2058628Google Scholar
[Yu19] , ‘The integral geometric Satake equivalence in mixed characteristic’, Preprint, 2019, .Google Scholar | arXiv
Cité par Sources :