Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_6,
author = {Raf Cluckers and Immanuel Halupczok and Silvain Rideau-Kikuchi},
title = {Hensel minimality {I}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.6/}
}
Raf Cluckers; Immanuel Halupczok; Silvain Rideau-Kikuchi. Hensel minimality I. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.6
[1] and , Diophantine problems over local fields. I , Amer. J. Math. 87 (1965), 605–630.Google Scholar | DOI
[2] and , Diophantine problems over local fields. II.: A complete set of axioms for -adic number theory , Amer. J. Math. 87 (1965), 631–648.Google Scholar | DOI
[3] and , Diophantine problems over local fields. III. decidable fields , Amer. J. Math. 83 (1966), 437–456.Google Scholar
[4] , Relative elimination of quantifiers for Henselian valued fields , Ann. Pure Appl. Logic 53 (1991), no. 1, 51–74.Google Scholar | DOI
[5] and , The arc space of horospherical varieties and motivic integration , Compos. Math. 149 (2013), no. 8, 1327–1352. MR 3103067Google Scholar | DOI
[6] , Panorama of -adic model theory , Annales des sciences mathématiques du Québec 36 (2012), 43–75.Google Scholar
[7] , Motivic Euler products and motivic height zeta functions, Mem. Amer. Math. Soc. (2018).Google Scholar | arXiv
[8] , , and , The spherical Hecke algebra, partition functions, and motivic integration , Trans. Amer. Math. Soc. 371 (2019), no. 9, 6169–6212.Google Scholar | DOI
[9] and , Motivic height zeta functions , Amer. J. Math. 138 (2016), no. 1, 1–59. MR 3462879Google Scholar | DOI
[10] and , Model theory of difference fields , Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071.Google Scholar | DOI
[11] , , and , Lipschitz continuity properties for -adic semi-algebraic and subanalytic functions , GAFA (Geom. Funct. Anal.) 20 (2010), 68–87.Google Scholar | DOI
[12] , , and , Local metric properties and regular stratifications of -adic definable sets , Commentarii Mathematici Helvetici 87 (2012), no. 4, 963–1009.Google Scholar | DOI
[13] , , and , Non-archimedean Yomdin-Gromov parametrizations and points of bounded height , Forum of Mathematics, Pi 3 (2015), no. e5, 60 pages, doi:10.1017/fmp.2015.4.Google Scholar | DOI
[14] , , and , Uniform Yomdin-Gromov parametrizations and points of bounded height in valued fields , Algebra Number Theory 14 (2020), no. 6, 1423–1456.Google Scholar | DOI
[15] , , and , Uniform analysis on local fields and applications to orbital integrals , Trans. Amer. Math. Soc. Ser. B 5 (2018), 125–166, .Google Scholar | DOI
[16] , , and , Transfer principle for the fundamental lemma , On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA, 2011, pp. 309–347.Google Scholar
[17] , , and , Hensel minimality II: Mixed characteristic and a diophantine application, (2021).Google Scholar
[18] and , Fields with analytic structure , J. Eur. Math. Soc. (JEMS) 13 (2011), 1147–1223.Google Scholar | DOI
[19] and , Strictly convergent analytic structures , J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 107–149.Google Scholar | DOI
[20] and , -minimality , J. Math. Log. 7 (2007), no. 2, 195–227.Google Scholar | DOI
[21] and , Constructible motivic functions and motivic integration , Inventiones Mathematicae 173 (2008), no. 1, 23–121.Google Scholar | DOI
[22] and , Constructible exponential functions, motivic Fourier transform and transfer principle , Annals of Mathematics 171 (2010), 1011–1065.Google Scholar | DOI
[23] and , Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero , J. Reine Angew. Math. 701 (2015), 1–31, DOI .Google Scholar | DOI
[24] and , Motivic mellin tranformation, (2020).Google Scholar
[25] , Decision procedures for real and -adic fields , Comm. Pure Appl. Math. 22 (1969), 131–151.Google Scholar | DOI
[26] , The rationality of the Poincaré series associated to the -adic points on a variety , Inventiones Mathematicae 77 (1984), 1–23.Google Scholar | DOI
[27] and , -adic and real subanalytic sets , Annals of Mathematics 128 (1988), no. 1, 79–138.Google Scholar | DOI
[28] and , Germs of arcs on singular algebraic varieties and motivic integration , Inventiones Mathematicae 135 (1999), 201–232.Google Scholar | DOI
[29] and , Definable sets, motives and -adic integrals , Journal of the American Mathematical Society 14 (2001), no. 2, 429–469.Google Scholar | DOI
[30] and , Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 327–348.Google Scholar | DOI
[31] , Remarks on Tarski’s problem concerning , Logic colloquium ′82 (Florence, 1982), Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106Google Scholar
[32] , -convexity and tame extensions. II , J. Symbolic Logic 62 (1997), no. 1, 14–34. MR 1450511 (98h:03048)Google Scholar | DOI
[33] , Tame topology and o-minimal structures, Lecture note series, vol. 248, Cambridge University Press, 1998.Google Scholar | DOI
[34] , , and , One-dimensional -adic subanalytic sets , Journal of the London Mathematical Society 59 (1999), no. 1, 1–20.Google Scholar | DOI
[35] and , -convexity and tame extensions , J. Symbolic Logic 60 (1995), no. 1, 74–102. MR 1324502 (96a:03048)Google Scholar | DOI
[36] and , O-minimal preparation theorems , Model theory and applications, Quad. Mat., vol. 11, Aracne, Rome, 2002, pp. 87–116.Google Scholar
[37] , On the elementary theory of maximal normed fields , Dokl. Akad. Nauk SSSR 165 (1965), 21–23.Google Scholar
[38] , Relative decidability and definability in henselian valued fields , J. Symbolic Logic 76 (2011), no. 4, 1240–1260.Google Scholar | DOI
[39] , Motivic local density , Math. Z. 287 (2017), no. 1-2, 361–403. MR 3694680Google Scholar | DOI
[40] and , Dimension in topological structures: topological closure and local property, Groups and Model Theory, Contemp. Math., vol. 576, Amer. Math. Soc., Providence, RI, 2012, pp. 89–94.Google Scholar
[41] , Non-archimedean stratifications in power bounded -convex fields, Notre Dame J. Form. Log. 61 (2020), no. 3, 441–465.Google Scholar
[42] , Non-archimedean stratifications of tangent cones , MLQ Math. Log. Q. 63 (2017), no. 3-4, 299–312. MR 3724385Google Scholar | DOI
[43] , Non-Archimedean Whitney stratifications , Proc. Lond. Math. Soc. (3) 109 (2014), no. 5, 1304–1362. MR 3283619Google Scholar | DOI
[44] and , Lipschitz stratifications in power-bounded -minimal fields , J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2717–2767. MR 3861807Google Scholar | DOI
[45] and , Cell decompositions of -minimal structures , Ann. Pure Appl. Logic 66 (1994), no. 2, 113–162.Google Scholar | DOI
[46] and , A version of o-minimality for the -adics , J. Symbolic Logic 62 (1997), no. 4, 1075–1092.Google Scholar | DOI
[47] and , Integration in valued fields , Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261–405.Google Scholar | DOI
[48] and , Motivic Poisson summation , Mosc. Math. J. 9 (2009), no. 3, 569–623.Google Scholar | DOI
[49] and , Non-archimedean tame topology and stably dominated types, Annals of Mathematics Studies, vol. 192, Princeton University Press, Princeton, NJ, 2016.Google Scholar | DOI
[50] , , and , Definable equivalence relations and zeta functions of groups, with an appendix by Raf Cluckers , J. Eur. Math. Soc. (JEMS) 20 (2018), no. 10, 2467–2537.Google Scholar | DOI
[51] , , and , Dp-minimal valued fields , J. Symb. Log. 82 (2017), no. 1, 151–165. MR 3631280Google Scholar | DOI
[52] , , and , Definable sets in ordered structures. II , Trans. Amer. Math. Soc. 295 (1986), no. 2, 593–605. MR 833698Google Scholar | DOI
[53] , On definable subsets of -adic fields , Journal of Symbolic Logic 41 (1976), 605–610.Google Scholar | DOI
[54] and , On variants of o-minimality , Annals of Pure and Applied Logic 79 (1996), no. 2, 165–209.Google Scholar | DOI
[55] , A growth dichotomy for o-minimal expansions of ordered fields , Logic: from foundations to applications (Staffordshire, 1993), Oxford Sci. Publ., Oxford Univ. Press, New York, 1996, pp. 385–399. MR 1428013 (98a:03052)Google Scholar
[56] , Uniform rationality of the Poincaré series of definable, analytic equivalence relations on local fields , Trans. Amer. Math. Soc. Ser. B 6 (2019), 274–296.Google Scholar | DOI
[57] and , Lipschitz stratifications in o-minimal structures , Ann. Sci. École Norm. Sup. (4) 49 (2016), no. 2, 399–421.Google Scholar | DOI
[58] , Geometric invariants for non-archimedean semialgebraic sets , Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 389–403. MR 3821179Google Scholar | DOI
[59] and , On dp-minimality, strong dependence and weight , J. Symbolic Logic 76 (2011), no. 3, 737–758. MR 2849244Google Scholar | DOI
[60] , Uniform -adic cell decomposition and local zeta functions , Journal für die reine und angewandte Mathematik 399 (1989), 137–172.Google Scholar
[61] , O-minimality and the André-Oort conjecture for , Ann. of Math. (2) 173 (2011), no. 3, 1779–1840.Google Scholar | DOI
[62] and , The rational points of a definable set , Duke Math. J. 133 (2006), no. 3, 591–616.Google Scholar | DOI
[63] and , Definable sets in ordered structures. I , Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697Google Scholar | DOI
[64] , Some properties of analytic difference valued fields , Journal of the Institute of Mathematics of Jussieu 16 (2017), no. 3, 447–499, DOI: .Google Scholar | DOI
[65] , Valuation theory and its applications volume II, Fields Institute Communications Series, Quantifier elimination for the relative Frobenius, pp. 323 – 352, AMS, Providence, (2003).Google Scholar
[66] , Quelques applications du théorème de densité de Chebotarev , Publ. Math. Inst. Hautes Études Sci. (1981), no. 54, 323–401.Google Scholar | DOI
[67] and , A course in model theory, Lecture Notes in Logic, vol. 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2908005Google Scholar | DOI
[68] , Hensel minimality: Geometric criteria for -h-minimality, (2022), .Google Scholar | arXiv
[69] , Integration in algebraically closed valued fields , Ann. Pure Appl. Logic 162 (2011), no. 5, 384–408.Google Scholar | DOI
[70] , Generalized Euler characteristic in power-bounded -convex valued fields , Compos. Math. 153 (2017), no. 12, 2591–2642. MR 3705299Google Scholar | DOI
[71] , -resolution of semialgebraic mappings. Addendum to: ‘Volume growth and entropy’ , Israel J. Math. 57 (1987), no. 3, 301–317. MR 889980Google Scholar | DOI
[72] , Volume growth and entropy , Israel J. Math. 57 (1987), 285–300.Google Scholar | DOI
Cité par Sources :