Hensel minimality I
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We present a framework for tame geometry on Henselian valued fields, which we call Hensel minimality. In the spirit of o-minimality, which is key to real geometry and several diophantine applications, we develop geometric results and applications for Hensel minimal structures that were previously known only under stronger, less axiomatic assumptions. We show the existence of t-stratifications in Hensel minimal structures and Taylor approximation results that are key to non-Archimedean versions of Pila–Wilkie point counting, Yomdin’s parameterization results and motivic integration. In this first paper, we work in equi-characteristic zero; in the sequel paper, we develop the mixed characteristic case and a diophantine application.
@article{10_1017_fmp_2022_6,
     author = {Raf Cluckers and Immanuel Halupczok and Silvain Rideau-Kikuchi},
     title = {Hensel minimality {I}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.6/}
}
TY  - JOUR
AU  - Raf Cluckers
AU  - Immanuel Halupczok
AU  - Silvain Rideau-Kikuchi
TI  - Hensel minimality I
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.6/
DO  - 10.1017/fmp.2022.6
LA  - en
ID  - 10_1017_fmp_2022_6
ER  - 
%0 Journal Article
%A Raf Cluckers
%A Immanuel Halupczok
%A Silvain Rideau-Kikuchi
%T Hensel minimality I
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.6/
%R 10.1017/fmp.2022.6
%G en
%F 10_1017_fmp_2022_6
Raf Cluckers; Immanuel Halupczok; Silvain Rideau-Kikuchi. Hensel minimality I. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.6

[1] Ax, J. and Kochen, S., Diophantine problems over local fields. I , Amer. J. Math. 87 (1965), 605–630.Google Scholar | DOI

[2] Ax, J. and Kochen, S., Diophantine problems over local fields. II.: A complete set of axioms for -adic number theory , Amer. J. Math. 87 (1965), 631–648.Google Scholar | DOI

[3] Ax, J. and Kochen, S., Diophantine problems over local fields. III. decidable fields , Amer. J. Math. 83 (1966), 437–456.Google Scholar

[4] Basarab, Ş., Relative elimination of quantifiers for Henselian valued fields , Ann. Pure Appl. Logic 53 (1991), no. 1, 51–74.Google Scholar | DOI

[5] Batyrev, V. and Moreau, A., The arc space of horospherical varieties and motivic integration , Compos. Math. 149 (2013), no. 8, 1327–1352. MR 3103067Google Scholar | DOI

[6] Bélair, L., Panorama of -adic model theory , Annales des sciences mathématiques du Québec 36 (2012), 43–75.Google Scholar

[7] Bilu, M., Motivic Euler products and motivic height zeta functions, Mem. Amer. Math. Soc. (2018).Google Scholar | arXiv

[8] Casselman, W., Cely, J. E., and Hales, T., The spherical Hecke algebra, partition functions, and motivic integration , Trans. Amer. Math. Soc. 371 (2019), no. 9, 6169–6212.Google Scholar | DOI

[9] Chambert-Loir, A. and Loeser, F., Motivic height zeta functions , Amer. J. Math. 138 (2016), no. 1, 1–59. MR 3462879Google Scholar | DOI

[10] Chatzidakis, Z. and Hrushovski, E., Model theory of difference fields , Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071.Google Scholar | DOI

[11] Cluckers, R., Comte, G., and Loeser, F., Lipschitz continuity properties for -adic semi-algebraic and subanalytic functions , GAFA (Geom. Funct. Anal.) 20 (2010), 68–87.Google Scholar | DOI

[12] Cluckers, R., Comte, G., and Loeser, F., Local metric properties and regular stratifications of -adic definable sets , Commentarii Mathematici Helvetici 87 (2012), no. 4, 963–1009.Google Scholar | DOI

[13] Cluckers, R., Comte, G., and Loeser, F., Non-archimedean Yomdin-Gromov parametrizations and points of bounded height , Forum of Mathematics, Pi 3 (2015), no. e5, 60 pages, doi:10.1017/fmp.2015.4.Google Scholar | DOI

[14] Cluckers, R., Forey, A., and Loeser, F., Uniform Yomdin-Gromov parametrizations and points of bounded height in valued fields , Algebra Number Theory 14 (2020), no. 6, 1423–1456.Google Scholar | DOI

[15] Cluckers, R., Gordon, J., and Halupczok, I., Uniform analysis on local fields and applications to orbital integrals , Trans. Amer. Math. Soc. Ser. B 5 (2018), 125–166, .Google Scholar | DOI

[16] Cluckers, R., Hales, T., and Loeser, F., Transfer principle for the fundamental lemma , On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA, 2011, pp. 309–347.Google Scholar

[17] Cluckers, R., Halupczok, I., Rideau, S. and Vermeulen, F., Hensel minimality II: Mixed characteristic and a diophantine application, (2021).Google Scholar

[18] Cluckers, R. and Lipshitz, L., Fields with analytic structure , J. Eur. Math. Soc. (JEMS) 13 (2011), 1147–1223.Google Scholar | DOI

[19] Cluckers, R. and Lipshitz, L., Strictly convergent analytic structures , J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 107–149.Google Scholar | DOI

[20] Cluckers, R. and Loeser, F., -minimality , J. Math. Log. 7 (2007), no. 2, 195–227.Google Scholar | DOI

[21] Cluckers, R. and Loeser, F., Constructible motivic functions and motivic integration , Inventiones Mathematicae 173 (2008), no. 1, 23–121.Google Scholar | DOI

[22] Cluckers, R. and Loeser, F., Constructible exponential functions, motivic Fourier transform and transfer principle , Annals of Mathematics 171 (2010), 1011–1065.Google Scholar | DOI

[23] Cluckers, R. and Loeser, F., Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero , J. Reine Angew. Math. 701 (2015), 1–31, DOI .Google Scholar | DOI

[24] Cluckers, R. and Loeser, F., Motivic mellin tranformation, (2020).Google Scholar

[25] Cohen, P. J., Decision procedures for real and -adic fields , Comm. Pure Appl. Math. 22 (1969), 131–151.Google Scholar | DOI

[26] Denef, J., The rationality of the Poincaré series associated to the -adic points on a variety , Inventiones Mathematicae 77 (1984), 1–23.Google Scholar | DOI

[27] Denef, J. and Van Den Dries, L., -adic and real subanalytic sets , Annals of Mathematics 128 (1988), no. 1, 79–138.Google Scholar | DOI

[28] Denef, J. and Loeser, F., Germs of arcs on singular algebraic varieties and motivic integration , Inventiones Mathematicae 135 (1999), 201–232.Google Scholar | DOI

[29] Denef, J. and Loeser, F., Definable sets, motives and -adic integrals , Journal of the American Mathematical Society 14 (2001), no. 2, 429–469.Google Scholar | DOI

[30] Denef, J. and Loeser, F., Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 327–348.Google Scholar | DOI

[31] Van Den Dries, L., Remarks on Tarski’s problem concerning , Logic colloquium ′82 (Florence, 1982), Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106Google Scholar

[32] Van Den Dries, L., -convexity and tame extensions. II , J. Symbolic Logic 62 (1997), no. 1, 14–34. MR 1450511 (98h:03048)Google Scholar | DOI

[33] Van Den Dries, L., Tame topology and o-minimal structures, Lecture note series, vol. 248, Cambridge University Press, 1998.Google Scholar | DOI

[34] Van Den Dries, L., Haskell, D., and Macpherson, D., One-dimensional -adic subanalytic sets , Journal of the London Mathematical Society 59 (1999), no. 1, 1–20.Google Scholar | DOI

[35] Van Den Dries, L. and Lewenberg, A. H., -convexity and tame extensions , J. Symbolic Logic 60 (1995), no. 1, 74–102. MR 1324502 (96a:03048)Google Scholar | DOI

[36] Van Den Dries, L. and Speissegger, P., O-minimal preparation theorems , Model theory and applications, Quad. Mat., vol. 11, Aracne, Rome, 2002, pp. 87–116.Google Scholar

[37] Eršov, J., On the elementary theory of maximal normed fields , Dokl. Akad. Nauk SSSR 165 (1965), 21–23.Google Scholar

[38] Flenner, J., Relative decidability and definability in henselian valued fields , J. Symbolic Logic 76 (2011), no. 4, 1240–1260.Google Scholar | DOI

[39] Forey, A., Motivic local density , Math. Z. 287 (2017), no. 1-2, 361–403. MR 3694680Google Scholar | DOI

[40] Fornasiero, A. and Halupczok, I., Dimension in topological structures: topological closure and local property, Groups and Model Theory, Contemp. Math., vol. 576, Amer. Math. Soc., Providence, RI, 2012, pp. 89–94.Google Scholar

[41] García Ramírez, E., Non-archimedean stratifications in power bounded -convex fields, Notre Dame J. Form. Log. 61 (2020), no. 3, 441–465.Google Scholar

[42] García Ramírez, E., Non-archimedean stratifications of tangent cones , MLQ Math. Log. Q. 63 (2017), no. 3-4, 299–312. MR 3724385Google Scholar | DOI

[43] Halupczok, I., Non-Archimedean Whitney stratifications , Proc. Lond. Math. Soc. (3) 109 (2014), no. 5, 1304–1362. MR 3283619Google Scholar | DOI

[44] Halupczok, I. and Yin, Y., Lipschitz stratifications in power-bounded -minimal fields , J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2717–2767. MR 3861807Google Scholar | DOI

[45] Haskell, D. and Macpherson, D., Cell decompositions of -minimal structures , Ann. Pure Appl. Logic 66 (1994), no. 2, 113–162.Google Scholar | DOI

[46] Haskell, D. and Macpherson, D., A version of o-minimality for the -adics , J. Symbolic Logic 62 (1997), no. 4, 1075–1092.Google Scholar | DOI

[47] Hrushovski, E. and Kazhdan, D., Integration in valued fields , Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261–405.Google Scholar | DOI

[48] Hrushovski, E. and Kazhdan, D., Motivic Poisson summation , Mosc. Math. J. 9 (2009), no. 3, 569–623.Google Scholar | DOI

[49] Hrushovski, E. and Loeser, F., Non-archimedean tame topology and stably dominated types, Annals of Mathematics Studies, vol. 192, Princeton University Press, Princeton, NJ, 2016.Google Scholar | DOI

[50] Hrushovski, E., Martin, B., and Rideau, S., Definable equivalence relations and zeta functions of groups, with an appendix by Raf Cluckers , J. Eur. Math. Soc. (JEMS) 20 (2018), no. 10, 2467–2537.Google Scholar | DOI

[51] Jahnke, Franziska, Simon, Pierre, and Walsberg, Erik, Dp-minimal valued fields , J. Symb. Log. 82 (2017), no. 1, 151–165. MR 3631280Google Scholar | DOI

[52] Knight, J. F., Pillay, A., and Steinhorn, C., Definable sets in ordered structures. II , Trans. Amer. Math. Soc. 295 (1986), no. 2, 593–605. MR 833698Google Scholar | DOI

[53] Macintyre, A., On definable subsets of -adic fields , Journal of Symbolic Logic 41 (1976), 605–610.Google Scholar | DOI

[54] Macpherson, D. and Steinhorn, C., On variants of o-minimality , Annals of Pure and Applied Logic 79 (1996), no. 2, 165–209.Google Scholar | DOI

[55] Miller, C., A growth dichotomy for o-minimal expansions of ordered fields , Logic: from foundations to applications (Staffordshire, 1993), Oxford Sci. Publ., Oxford Univ. Press, New York, 1996, pp. 385–399. MR 1428013 (98a:03052)Google Scholar

[56] Nguyen, K. H., Uniform rationality of the Poincaré series of definable, analytic equivalence relations on local fields , Trans. Amer. Math. Soc. Ser. B 6 (2019), 274–296.Google Scholar | DOI

[57] Nguyen, N. and Valette, G., Lipschitz stratifications in o-minimal structures , Ann. Sci. École Norm. Sup. (4) 49 (2016), no. 2, 399–421.Google Scholar | DOI

[58] Nicaise, J., Geometric invariants for non-archimedean semialgebraic sets , Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 389–403. MR 3821179Google Scholar | DOI

[59] Onshuus, A. and Usvyatsov, A., On dp-minimality, strong dependence and weight , J. Symbolic Logic 76 (2011), no. 3, 737–758. MR 2849244Google Scholar | DOI

[60] Pas, J., Uniform -adic cell decomposition and local zeta functions , Journal für die reine und angewandte Mathematik 399 (1989), 137–172.Google Scholar

[61] Pila, J., O-minimality and the André-Oort conjecture for , Ann. of Math. (2) 173 (2011), no. 3, 1779–1840.Google Scholar | DOI

[62] Pila, J. and Wilkie, A. J., The rational points of a definable set , Duke Math. J. 133 (2006), no. 3, 591–616.Google Scholar | DOI

[63] Pillay, A. and Steinhorn, C., Definable sets in ordered structures. I , Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697Google Scholar | DOI

[64] Rideau, S., Some properties of analytic difference valued fields , Journal of the Institute of Mathematics of Jussieu 16 (2017), no. 3, 447–499, DOI: .Google Scholar | DOI

[65] Scanlon, T., Valuation theory and its applications volume II, Fields Institute Communications Series, Quantifier elimination for the relative Frobenius, pp. 323 – 352, AMS, Providence, (2003).Google Scholar

[66] Serre, J.-P., Quelques applications du théorème de densité de Chebotarev , Publ. Math. Inst. Hautes Études Sci. (1981), no. 54, 323–401.Google Scholar | DOI

[67] Tent, K. and Ziegler, M., A course in model theory, Lecture Notes in Logic, vol. 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2908005Google Scholar | DOI

[68] Vermeulen, F., Hensel minimality: Geometric criteria for -h-minimality, (2022), .Google Scholar | arXiv

[69] Yin, Y., Integration in algebraically closed valued fields , Ann. Pure Appl. Logic 162 (2011), no. 5, 384–408.Google Scholar | DOI

[70] Yin, Y., Generalized Euler characteristic in power-bounded -convex valued fields , Compos. Math. 153 (2017), no. 12, 2591–2642. MR 3705299Google Scholar | DOI

[71] Yomdin, Y., -resolution of semialgebraic mappings. Addendum to: ‘Volume growth and entropy’ , Israel J. Math. 57 (1987), no. 3, 301–317. MR 889980Google Scholar | DOI

[72] Yomdin, Y., Volume growth and entropy , Israel J. Math. 57 (1987), 285–300.Google Scholar | DOI

Cité par Sources :