Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_5,
author = {K\k{e}stutis \v{C}esnavi\v{c}ius},
title = {Grothendieck{\textendash}Serre in the quasi-split unramified case},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.5/}
}
Kęstutis Česnavičius. Grothendieck–Serre in the quasi-split unramified case. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.5
[Alp14] , ‘Adequate moduli spaces and geometrically reductive group schemes’, Algebr. Geom. 1 (4) (2014), 489–531. doi: 10.14231/AG-2014-022. See also for an updated post-publication version. MR3272912.Google Scholar | arXiv | DOI
[AHW18] , and , ‘Affine representability results in A1-homotopy theory, II: Principal bundles and homogeneous spaces’, Geom. Topol. 22(2) (2018), 1181–1225. doi: 10.2140/gt.2018.22.1181. MR3748687Google Scholar | DOI
[AHW20] , ‘Affine representability results in A1-homotopy theory III: finite fields and complements’, Algebr. Geom. 7(5) (2020), 634–644. doi: 10.14231/ag-2020-023. MR4156421Google Scholar | DOI
[BB70] , ‘Rationally trivial homogeneous principal fibrations of schemes’, Invent. Math. 11 (1970), 259–262. Doi: 10.1007/BF01404652. MR276250.Google Scholar | DOI
[BČ22] and , ‘Torsors on loop groups and the Hitchin fibration’, Ann. Sci. École Norm. Sup. (2022), to appear. Available at .Google Scholar | arXiv
[BFF17] and , ‘Rationally isomorphic hermitian forms and torsors of some non-reductive groups’, Adv. Math. 312 (2017), 150–184. Doi: 10.1016/j.aim.2017.03.012. MR3635808.Google Scholar | DOI
[BFFH19] , and , ‘Orders that are étale-locally isomorphic’, Algebra i Analiz 31(4) (2019), 1–15. MR3985253Google Scholar
[BFFP20] , and , ‘On the Grothendieck–Serre conjecture for classical groups’, Preprint, 2020. arXiv: 1911.0766v2.Google Scholar | arXiv
[BouAC] , Éléments de mathématique. Algèbre commutative, (Springer, 2006, 2007), chap. I–VII, Hermann (1961, 1964, 1965); chap. VIII–X (French).Google Scholar | DOI
[BVG14] and , ‘An isomorphism problem for Azumaya algebras with involution over semilocal Bézout domains’, Algebr. Represent. Theory 17(6) (2014), 1635–1655. doi: 10.1007/s10468-013-9463-6. MR3284324Google Scholar | DOI
[BT87] and , ‘Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(3) (1987), 671–698 (French). MR927605Google Scholar
[Che10] , ‘Variations on a theme of groups splitting by a quadratic extension and Grothendieck- Serre conjecture for group schemes F4 with trivial g3 invariant’, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 147–169. MR2804252Google Scholar
[Čes17] , ‘A modular description of ’, Algebra Number Theory 11(9) (2017), 2001–2089. MR3735461Google Scholar
[Čes21] , ‘Macaulayfication of Noetherian schemes’, Duke Math. J. 170(7) (2021), 1419–1455. doi: 10.1215/00127094-2020-0063. MR4255056.Google Scholar | DOI
[Čes22] , ‘Problems about torsors over regular rings (with an appendix by Yifei Zhao)’, Acta Math. Vietnam. (2022), to appear. Available at .Google Scholar | arXiv
[ČS22] and , ‘Purity for flat cohomology’, Preprint, 2022, arXiv: 1912.10932v2.Google Scholar | arXiv
[CT79] , ‘Formes quadratiques sur les anneaux semi-locaux réguliers’, Bull. Soc. Math. France Mém. 59 (1979), 13–31 (French). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977). MR532002Google Scholar | DOI
[CT95] , ‘Birational invariants, purity and the Gersten conjecture’, in Proc. Sympos. Pure Math., K-theory and algebraic geometry: Connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Vol. 58 (Amer. Math. Soc., Providence, RI, 1995), 1–64. MR1327280Google Scholar | DOI
[CTHK97] , and , ‘The Bloch-Ogus-Gabber theorem’, in Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun., Vol. 16 (Amer. Math. Soc., Providence, RI, 1997), 31–94. MR1466971Google Scholar | DOI
[CTO92] and , ‘Espaces principaux homogènes localement triviaux’, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 97–122 (French). MR1179077Google Scholar | DOI
[CTS79] and , ‘Fibrés quadratiques et composantes connexes réelles’, Math. Ann. 244(2) (1979), 105–134. doi:10.1007/BF01420486 (French). MR550842.Google Scholar
[CTS87] and , ‘Principal homogeneous spaces under flasque tori: applications’, J. Algebra 106(1) (1987), 148–205. doi: 10.1016/0021-8693(87)90026-3. MR878473.Google Scholar | DOI
[Con14] , Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43 (Soc. Math. France, Paris, 2014), 93–444 (English, with English and French summaries). MR3362641Google Scholar
[Fed16] , ‘Affine Grassmannians of group schemes and exotic principal bundles over A1’, Amer. J. Math. 138(4) (2016), 879–906. doi: 10.1353/ajm.2016.0036. MR3538146.Google Scholar | DOI
[Fed21a] , ‘On the Grothendieck–Serre conjecture about principal bundles and its generalizations’, Algebra Number Theory (2021), to appear. Available at .Google Scholar | arXiv
[Fed21b] , ‘On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic’, Trans. Amer. Math. Soc. 375 01) (2021), 559–586. doi: 10.1090/tran/8490. MR4358676.Google Scholar
[Fir22] , ‘An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution’, Manuscripta Math. (2022), to appear. Available at .Google Scholar | arXiv | DOI
[FP15] and , ‘A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields’, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 169–193. doi: 10.1007/s10240-015-0075-z. MR3415067Google Scholar
[FR70] and , ‘Fibres formelles d’un anneau local noethérien’, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR0272779Google Scholar
[Gab94] , ‘Gersten’s conjecture for some complexes of vanishing cycles’, Manuscripta Math. 85(3-4) (1994), 323–343. doi: 10.1007/BF02568202. MR1305746Google Scholar
[Gab01] , ‘On space filling curves and Albanese varieties’, Geom. Funct. Anal. 11(6) (2001), 1192–1200. doi: 10.1007/s00039-001-8228-2. MR1878318Google Scholar | DOI
[Gil02] , ‘Torseurs sur la droite affine’, Transform. Groups 7(3) (2002), 231–245. doi: 10.1007/s00031- 002-0012-3 (French, with English summary). MR1923972Google Scholar | DOI
[Gil05] , ‘Errata: “Torsors on the affine line” (French) [Transform. Groups (3) (2002), 231–245; MR1923972]’, Transform. Groups 10(2) (2005), 267–269 (French, with English summary). doi: 10.1007/s00031-005-1010-z. MR2195603Google Scholar | DOI
[Gil09] , ‘Le problème de Kneser-Tits’, Séminaire Bourbaki 983 (2009), 39–81. (French, with French summary). MR2605318Google Scholar
[Gil21] , ‘When is a reductive group scheme linear?’, Michigan Math. J. (2021), to appear. Available at .Google Scholar | arXiv
[Gir71] , Cohomologie non abélienne (Springer-Verlag, Berlin, 1971) (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR0344253 (49 #8992)Google Scholar | DOI
[GLL15] , and , ‘Hypersurfaces in projective schemes and a moving lemma’, Duke Math. J. 164(7) (2015), 1187–1270. doi: 10.1215/00127094-2877293. MR3347315Google Scholar | DOI
[Gro58] , ‘Torsion homologique et sections rationnelles’, Seminaire Claude Chevalley 3(5) (1958), 1–29 (French).Google Scholar
[Gro68] , Le groupe de Brauer. II. Théorie cohomologique, Dix Exposés sur la Cohomolo- gie des Schémas (North-Holland, Amsterdam; Masson, Paris, 1968), 67–87 (French). MR0244270 (39 #5586b)Google Scholar
[EGA I] and , ‘Éléments de géométrie algébrique. I. Le langage des schémas’, Inst. Hautes Études Sci. Publ. Math. 4(228) (1960). MR0217083 (36 #177a)Google Scholar | DOI
[EGA II] and , ‘Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de mor-phismes’, Inst. Hautes Études Sci. Publ. Math. 8(222) (1961). (French). MR0163909 (29 #1208)Google Scholar
[EGA III1] and , ‘Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I’, Inst. Hautes Études Sci. Publ. Math. 11(167) (1961). MR0217085 (36 #177c)Google Scholar
[EGA IV1] and , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I’, Inst. Hautes Études Sci. Publ. Math. 20(259) (1964) (French). MR0173675 (30 #3885)Google Scholar
[EGA IV2] and , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II’, Inst. Hautes Études Sci. Publ. Math. 24(231) (1965) (French). MR0199181 (33 #7330)Google Scholar
[EGA IV3] and , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Inst. Hautes Études Sci. Publ. Math. 28(255) (1966). MR0217086 (36 #178)Google Scholar | DOI
[EGA IV4] and , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV’, Inst. Hautes Études Sci. Publ. Math. 32(361) (1967) (French). MR0238860 (39 #220)Google Scholar
[Guo20] , ‘The Grothendieck–Serre conjecture over semilocal Dedekind rings’, Transform. Groups (2020), to appear. Available at .Google Scholar | arXiv | DOI
[Har67] , ‘Halbeinfache Gruppenschemata über Dedekindringen’, Invent. Math. 4 (1967), 165–191. doi: 10.1007/BF01425754 (German). MR225785Google Scholar | DOI
[Jou83] , Théorèmes de Bertini et applications, Progress in Mathematics, Vol. 42 (Birkhäuser Boston, Inc., Boston, MA, 1983) (French). MR725671Google Scholar
[Lin81] , ‘On the Bass–-Quillen conjecture concerning projective modules over polynomial rings’, Invent. Math. 65(2) (1981/82), 319–323. doi: 10.1007/BF01389017. MR641133.Google Scholar | DOI
[Mat89] , Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 8 (Cambridge University Press, Cambridge, 1989). Translated from the Japanese by M. Reid. MR1011461 (90i:13001)Google Scholar
[MB96] , ‘Un problème de descente’, Bull. Soc. Math. France 124(4) (1996), 559–585 (French, with English and French summaries). MR1432058Google Scholar | DOI
[MFK94] , and , Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Vol. 34 (Springer-Verlag, Berlin, 1994). MR1304906 (95m:14012)Google Scholar
[MVW06] , and , Lecture notes on motivic cohomology, Clay Mathematics Monographs, Vol. 2 (American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006). MR2242284Google Scholar
[Nis89] , ‘Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings’, C. R. Acad. Sci. Paris Sér. I Math. 309(10) (1989), 651–655 (English, with French summary). MR1054270Google Scholar
[Nis82] , ‘Etale cohomology and arithmetic of semisimple groups’, Ph.D. thesis (Harvard University, Cambridge, MA, 1982). MR2632405Google Scholar
[Nis84] , ‘Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind’, C. R. Acad. Sci. Paris Sér. I Math. 299(1) (1984), 5–8 (French, with English summary). MR756297Google Scholar
[Oja80] , ‘Quadratic forms over regular rings’, J. Indian Math. Soc. (N.S.) 44(1-4) (1980), 109–116. MR752647Google Scholar
[Oja82] , ‘Unités représentées par des formes quadratiques ou par des normes réduites’, in Algebraic K-theory, Part II, Lecture Notes in Math., Vol. 967 (Springer, Berlin-New York, 1982), 291–299 (French). MR689397Google Scholar
[OP99] and , ‘A purity theorem for the Witt group’, Ann. Sci. École Norm. Sup. (4) 32(1) (1999), 71–86 (English, with English and French summaries). doi: 10.1016/S0012-9593(99)80009-3. MR1670591Google Scholar | DOI
[OP01] and , ‘Rationally trivial Hermitian spaces are locally trivial’, Math. Z. 237(1) (2001), 181–198. doi: 10.1007/PL00004859. MR1836777Google Scholar | DOI
[OPZ04] , and , ‘On the norm principle for quadratic forms’, J. Ramanujan Math. Soc. 19(4) (2004), 289–300. MR2125505Google Scholar
[Pan05] , ‘Purity for multipliers, algebra and number theory’, Hindustan Book Agency, Delhi, 2005, 66–89. MR2193345Google Scholar
[Pan09] , ‘Rationally isotropic quadratic spaces are locally isotropic’, Invent. Math. 176(2) (2009), 397–403. doi: 10.1007/s00222-008-0168-0. MR2495767.Google Scholar | DOI
[Pan15] , ‘Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field’, Preprint, 2015. Available at https://www.math.uni-bielefeld.de/lag/man/559.pdf.Google Scholar
[Pan18] , ‘On Grothendieck–Serre conjecture concerning principal bundles’, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, (World Sci. Publ., Hackensack, NJ, 2018), 201–221. MR3966763Google Scholar | DOI
[Pan19a] , ‘Nice triples and moving lemmas for motivic spaces’, Izv. Math. 83(4) (2019), 796–829. doi: 10.1070/IM8819. MR3985694Google Scholar | DOI
[Pan19b] , ‘Notes on a Grothendieck-Serre conjecture in mixed characteristic case’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 484 (2019), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 138–148; English transl., J. Math. Sci. (N. Y.) 252(6) (2021), 841–848. MR4053274.Google Scholar
[Pan20a] , ‘Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field’, Izv. Ross. Akad. Nauk Ser. Mat. 84 (2020), no. 4, 169–186, DOI 10.4213/im8982 (Russian); English transl., Izv. Math. (2020), no. 4, 780–795. MR4133391Google Scholar
[Pan20b] , ‘Two purity theorems and the Grothendieck–Serre’s conjecture concerning principal -bundles’, Mat. Sb. 211(12) (2020), 123–142. doi: 10.4213/sm9393 (Russian). MR4181078Google Scholar
[Poo04] , ‘Bertini theorems over finite fields’, Ann. of Math. (2) 160(3) (2004), 1099–1127. doi: 10.4007/annals.2004.160.1099. MR2144974Google Scholar | DOI
[PP10] and , ‘Rationally isotropic quadratic spaces are locally isotropic: II’, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 515–523. MR2804263Google Scholar
[PP15] and , ‘Rationally isotropic quadratic spaces are locally isotropic: III’, Algebra i Analiz 27(6) (2015), 234–241. doi: 10.1090/spmj/1433; English transl., St. Petersburg Math. J. (6) (2016), 1029–1034. MR3589229Google Scholar
[PS97] and , ‘On a conjecture of Grothendieck concerning Azumaya algebras’, Algebra i Analiz 9(4) (1997), 215–223 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (4) (1998), 851–858. MR1604322Google Scholar
[PS16] and , ‘On the Grothendieck-Serre conjecture concerning principal G-bundles over semi-local Dedekind domains’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 443 (2016), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 29, 133–146; English transl., J. Math. Sci. (N.Y.) (4) (2017), 453–462. doi: 10.1007/s10958-017-3316-5. MR3507770.Google Scholar
[PSV15] , and , ‘On Grothendieck-Serre’s conjecture concerning principal G-bundles over reductive group schemes: I’, Compos. Math. 151(3) (2015), 535–567. doi: 10.1112/S0010437X14007635. MR3320571.Google Scholar | DOI
[Qui73] , ‘Higher algebraic K-theory. I’, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341 (Springer, Berlin, 1973), 85–147. MR0338129Google Scholar
[Rag94] , ‘Principal bundles admitting a rational section’, Invent. Math. 116(1–3) (1994), 409–423. doi: 10.1007/BF01231567. MR1253199.Google Scholar | DOI
[RR84] and , ‘Principal bundles on the affine line’, Proc. Indian Acad. Sci. Math. Sci. 93(2–3) (1984), 137–145. doi: 10.1007/BF02840656. MR813075.Google Scholar | DOI
[Scu18] , ‘The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields’, Proc. Amer. Math. Soc. 146(1) (2018), 1–13. doi: 10.1090/proc/13744. MR3723116.Google Scholar | DOI
[Ser58] , ‘Espaces fibrés algébriques’, Seminaire Claude Chevalley 3 1) (1958), 1–37 (French).Google Scholar
[SGA 3II] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152 (Springer-Verlag, Berlin-New York, 1970) (French). MR0274459 (43 #223b)Google Scholar
[SGA 3III new] and (eds.), Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8 (Société Mathématique de France, Paris, 2011) (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867622Google Scholar
[SGA 4III] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305 (Springer-Verlag, Berlin, 1973) (French). Séminaire de Géométrie Algébrique du Bois-Marie, 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR0354654 (50 #7132).Google Scholar
[SP] et al., The Stacks Project. Available at http://stacks.math.columbia.edu.Google Scholar
[Tsy19] , ‘A step toward the non-equicharacteristic Grothendieck-Serre conjecture’, Algebra i Analiz 31 1) (2019), 246–254. doi: 10.1090/spmj/1591 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (1) (2020), 181–187. MR3932824Google Scholar
[Zai00] , ‘On Grothendieck’s conjecture on principal homogeneous spaces for some classical algebraic groups’, Algebra i Analiz 12(1) (2000), 150–184 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (1) (2001), 117–143. MR1758566Google Scholar
[Zai05] , ‘On Knebusch’s norm principle for quadratic forms over semi-local rings’, Math. Z. 251(2) (2005), 415–425. doi: 10.1007/s00209-005-0809-6. MR2191034Google Scholar
Cité par Sources :