Grothendieck–Serre in the quasi-split unramified case
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

The Grothendieck–Serre conjecture predicts that every generically trivial torsor under a reductive group scheme G over a regular local ring R is trivial. We settle it in the case when G is quasi-split and R is unramified. Some of the techniques that allow us to overcome obstacles that have so far kept the mixed characteristic case out of reach include a version of Noether normalization over discrete valuation rings, as well as a suitable presentation lemma for smooth relative curves in mixed characteristic that facilitates passage to the relative affine line via excision and patching.
@article{10_1017_fmp_2022_5,
     author = {K\k{e}stutis \v{C}esnavi\v{c}ius},
     title = {Grothendieck{\textendash}Serre in the quasi-split unramified case},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.5/}
}
TY  - JOUR
AU  - Kęstutis Česnavičius
TI  - Grothendieck–Serre in the quasi-split unramified case
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.5/
DO  - 10.1017/fmp.2022.5
LA  - en
ID  - 10_1017_fmp_2022_5
ER  - 
%0 Journal Article
%A Kęstutis Česnavičius
%T Grothendieck–Serre in the quasi-split unramified case
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.5/
%R 10.1017/fmp.2022.5
%G en
%F 10_1017_fmp_2022_5
Kęstutis Česnavičius. Grothendieck–Serre in the quasi-split unramified case. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.5

[Alp14] Alper, J., ‘Adequate moduli spaces and geometrically reductive group schemes’, Algebr. Geom. 1 (4) (2014), 489–531. doi: 10.14231/AG-2014-022. See also for an updated post-publication version. MR3272912.Google Scholar | arXiv | DOI

[AHW18] Asok, A., Hoyois, M. and Wendt, M., ‘Affine representability results in A1-homotopy theory, II: Principal bundles and homogeneous spaces’, Geom. Topol. 22(2) (2018), 1181–1225. doi: 10.2140/gt.2018.22.1181. MR3748687Google Scholar | DOI

[AHW20] Asok, A., ‘Affine representability results in A1-homotopy theory III: finite fields and complements’, Algebr. Geom. 7(5) (2020), 634–644. doi: 10.14231/ag-2020-023. MR4156421Google Scholar | DOI

[BB70] Białynicki-Birula, A., ‘Rationally trivial homogeneous principal fibrations of schemes’, Invent. Math. 11 (1970), 259–262. Doi: 10.1007/BF01404652. MR276250.Google Scholar | DOI

[BČ22] Bouthier, A. and Česnavičius, K., ‘Torsors on loop groups and the Hitchin fibration’, Ann. Sci. École Norm. Sup. (2022), to appear. Available at .Google Scholar | arXiv

[BFF17] Bayer-Fluckiger, E. and First, U. A., ‘Rationally isomorphic hermitian forms and torsors of some non-reductive groups’, Adv. Math. 312 (2017), 150–184. Doi: 10.1016/j.aim.2017.03.012. MR3635808.Google Scholar | DOI

[BFFH19] Bayer-Fluckiger, E., First, U. A. and Huruguen, M., ‘Orders that are étale-locally isomorphic’, Algebra i Analiz 31(4) (2019), 1–15. MR3985253Google Scholar

[BFFP20] Bayer-Fluckiger, E., First, U. A. and Parimala, R., ‘On the Grothendieck–Serre conjecture for classical groups’, Preprint, 2020. arXiv: 1911.0766v2.Google Scholar | arXiv

[BouAC] Bourbaki, N., Éléments de mathématique. Algèbre commutative, (Springer, 2006, 2007), chap. I–VII, Hermann (1961, 1964, 1965); chap. VIII–X (French).Google Scholar | DOI

[BVG14] Beke, S. and Van Geel, J., ‘An isomorphism problem for Azumaya algebras with involution over semilocal Bézout domains’, Algebr. Represent. Theory 17(6) (2014), 1635–1655. doi: 10.1007/s10468-013-9463-6. MR3284324Google Scholar | DOI

[BT87] Bruhat, F. and Tits, J., ‘Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(3) (1987), 671–698 (French). MR927605Google Scholar

[Che10] Chernousov, V., ‘Variations on a theme of groups splitting by a quadratic extension and Grothendieck- Serre conjecture for group schemes F4 with trivial g3 invariant’, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 147–169. MR2804252Google Scholar

[Čes17] Česnavičius, K., ‘A modular description of ’, Algebra Number Theory 11(9) (2017), 2001–2089. MR3735461Google Scholar

[Čes21] Česnavičius, K., ‘Macaulayfication of Noetherian schemes’, Duke Math. J. 170(7) (2021), 1419–1455. doi: 10.1215/00127094-2020-0063. MR4255056.Google Scholar | DOI

[Čes22] Česnavičius, K., ‘Problems about torsors over regular rings (with an appendix by Yifei Zhao)’, Acta Math. Vietnam. (2022), to appear. Available at .Google Scholar | arXiv

[ČS22] Česnavičius, K. and Scholze, P., ‘Purity for flat cohomology’, Preprint, 2022, arXiv: 1912.10932v2.Google Scholar | arXiv

[CT79] Colliot-Thélène, J.-L., ‘Formes quadratiques sur les anneaux semi-locaux réguliers’, Bull. Soc. Math. France Mém. 59 (1979), 13–31 (French). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977). MR532002Google Scholar | DOI

[CT95] Colliot-Thélène, J.-L., ‘Birational invariants, purity and the Gersten conjecture’, in Proc. Sympos. Pure Math., K-theory and algebraic geometry: Connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Vol. 58 (Amer. Math. Soc., Providence, RI, 1995), 1–64. MR1327280Google Scholar | DOI

[CTHK97] Colliot-Thélène, J.-L., Hoobler, R. T. and Kahn, B., ‘The Bloch-Ogus-Gabber theorem’, in Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun., Vol. 16 (Amer. Math. Soc., Providence, RI, 1997), 31–94. MR1466971Google Scholar | DOI

[CTO92] Colliot-Thélène, J.-L. and Ojanguren, M., ‘Espaces principaux homogènes localement triviaux’, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 97–122 (French). MR1179077Google Scholar | DOI

[CTS79] Colliot-Thélène, J.-L. and Sansuc, J.-J., ‘Fibrés quadratiques et composantes connexes réelles’, Math. Ann. 244(2) (1979), 105–134. doi:10.1007/BF01420486 (French). MR550842.Google Scholar

[CTS87] Colliot-Thélène, J.-L. and Sansuc, J.-J., ‘Principal homogeneous spaces under flasque tori: applications’, J. Algebra 106(1) (1987), 148–205. doi: 10.1016/0021-8693(87)90026-3. MR878473.Google Scholar | DOI

[Con14] Conrad, B., Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43 (Soc. Math. France, Paris, 2014), 93–444 (English, with English and French summaries). MR3362641Google Scholar

[Fed16] Fedorov, R., ‘Affine Grassmannians of group schemes and exotic principal bundles over A1’, Amer. J. Math. 138(4) (2016), 879–906. doi: 10.1353/ajm.2016.0036. MR3538146.Google Scholar | DOI

[Fed21a] Fedorov, R., ‘On the Grothendieck–Serre conjecture about principal bundles and its generalizations’, Algebra Number Theory (2021), to appear. Available at .Google Scholar | arXiv

[Fed21b] Fedorov, R., ‘On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic’, Trans. Amer. Math. Soc. 375 01) (2021), 559–586. doi: 10.1090/tran/8490. MR4358676.Google Scholar

[Fir22] First, U. A., ‘An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution’, Manuscripta Math. (2022), to appear. Available at .Google Scholar | arXiv | DOI

[FP15] Fedorov, R. and Panin, I., ‘A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields’, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 169–193. doi: 10.1007/s10240-015-0075-z. MR3415067Google Scholar

[FR70] Ferrand, D. and Raynaud, M., ‘Fibres formelles d’un anneau local noethérien’, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR0272779Google Scholar

[Gab94] Gabber, O., ‘Gersten’s conjecture for some complexes of vanishing cycles’, Manuscripta Math. 85(3-4) (1994), 323–343. doi: 10.1007/BF02568202. MR1305746Google Scholar

[Gab01] Gabber, O., ‘On space filling curves and Albanese varieties’, Geom. Funct. Anal. 11(6) (2001), 1192–1200. doi: 10.1007/s00039-001-8228-2. MR1878318Google Scholar | DOI

[Gil02] Gille, P., ‘Torseurs sur la droite affine’, Transform. Groups 7(3) (2002), 231–245. doi: 10.1007/s00031- 002-0012-3 (French, with English summary). MR1923972Google Scholar | DOI

[Gil05] Gille, P., ‘Errata: “Torsors on the affine line” (French) [Transform. Groups (3) (2002), 231–245; MR1923972]’, Transform. Groups 10(2) (2005), 267–269 (French, with English summary). doi: 10.1007/s00031-005-1010-z. MR2195603Google Scholar | DOI

[Gil09] Gille, P., ‘Le problème de Kneser-Tits’, Séminaire Bourbaki 983 (2009), 39–81. (French, with French summary). MR2605318Google Scholar

[Gil21] Gille, P., ‘When is a reductive group scheme linear?’, Michigan Math. J. (2021), to appear. Available at .Google Scholar | arXiv

[Gir71] Giraud, J., Cohomologie non abélienne (Springer-Verlag, Berlin, 1971) (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR0344253 (49 #8992)Google Scholar | DOI

[GLL15] Gabber, O., Liu, Q. and Lorenzini, D., ‘Hypersurfaces in projective schemes and a moving lemma’, Duke Math. J. 164(7) (2015), 1187–1270. doi: 10.1215/00127094-2877293. MR3347315Google Scholar | DOI

[Gro58] Grothendieck, A., ‘Torsion homologique et sections rationnelles’, Seminaire Claude Chevalley 3(5) (1958), 1–29 (French).Google Scholar

[Gro68] Grothendieck, A., Le groupe de Brauer. II. Théorie cohomologique, Dix Exposés sur la Cohomolo- gie des Schémas (North-Holland, Amsterdam; Masson, Paris, 1968), 67–87 (French). MR0244270 (39 #5586b)Google Scholar

[EGA I] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. I. Le langage des schémas’, Inst. Hautes Études Sci. Publ. Math. 4(228) (1960). MR0217083 (36 #177a)Google Scholar | DOI

[EGA II] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de mor-phismes’, Inst. Hautes Études Sci. Publ. Math. 8(222) (1961). (French). MR0163909 (29 #1208)Google Scholar

[EGA III1] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I’, Inst. Hautes Études Sci. Publ. Math. 11(167) (1961). MR0217085 (36 #177c)Google Scholar

[EGA IV1] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I’, Inst. Hautes Études Sci. Publ. Math. 20(259) (1964) (French). MR0173675 (30 #3885)Google Scholar

[EGA IV2] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II’, Inst. Hautes Études Sci. Publ. Math. 24(231) (1965) (French). MR0199181 (33 #7330)Google Scholar

[EGA IV3] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Inst. Hautes Études Sci. Publ. Math. 28(255) (1966). MR0217086 (36 #178)Google Scholar | DOI

[EGA IV4] Grothendieck, A. and Dieudonné, J., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV’, Inst. Hautes Études Sci. Publ. Math. 32(361) (1967) (French). MR0238860 (39 #220)Google Scholar

[Guo20] Guo, N., ‘The Grothendieck–Serre conjecture over semilocal Dedekind rings’, Transform. Groups (2020), to appear. Available at .Google Scholar | arXiv | DOI

[Har67] Harder, G., ‘Halbeinfache Gruppenschemata über Dedekindringen’, Invent. Math. 4 (1967), 165–191. doi: 10.1007/BF01425754 (German). MR225785Google Scholar | DOI

[Jou83] Jouanolou, J.-P., Théorèmes de Bertini et applications, Progress in Mathematics, Vol. 42 (Birkhäuser Boston, Inc., Boston, MA, 1983) (French). MR725671Google Scholar

[Lin81] Lindel, H., ‘On the Bass–-Quillen conjecture concerning projective modules over polynomial rings’, Invent. Math. 65(2) (1981/82), 319–323. doi: 10.1007/BF01389017. MR641133.Google Scholar | DOI

[Mat89] Matsumura, H., Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 8 (Cambridge University Press, Cambridge, 1989). Translated from the Japanese by M. Reid. MR1011461 (90i:13001)Google Scholar

[MB96] Moret-Bailly, L., ‘Un problème de descente’, Bull. Soc. Math. France 124(4) (1996), 559–585 (French, with English and French summaries). MR1432058Google Scholar | DOI

[MFK94] Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Vol. 34 (Springer-Verlag, Berlin, 1994). MR1304906 (95m:14012)Google Scholar

[MVW06] Mazza, C., Voevodsky, V. and Weibel, C., Lecture notes on motivic cohomology, Clay Mathematics Monographs, Vol. 2 (American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006). MR2242284Google Scholar

[Nis89] Nisnevich, Y., ‘Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings’, C. R. Acad. Sci. Paris Sér. I Math. 309(10) (1989), 651–655 (English, with French summary). MR1054270Google Scholar

[Nis82] Nisnevich, Y. A., ‘Etale cohomology and arithmetic of semisimple groups’, Ph.D. thesis (Harvard University, Cambridge, MA, 1982). MR2632405Google Scholar

[Nis84] Nisnevich, Y. A., ‘Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind’, C. R. Acad. Sci. Paris Sér. I Math. 299(1) (1984), 5–8 (French, with English summary). MR756297Google Scholar

[Oja80] Ojanguren, M., ‘Quadratic forms over regular rings’, J. Indian Math. Soc. (N.S.) 44(1-4) (1980), 109–116. MR752647Google Scholar

[Oja82] Ojanguren, M., ‘Unités représentées par des formes quadratiques ou par des normes réduites’, in Algebraic K-theory, Part II, Lecture Notes in Math., Vol. 967 (Springer, Berlin-New York, 1982), 291–299 (French). MR689397Google Scholar

[OP99] Ojanguren, M. and Panin, I., ‘A purity theorem for the Witt group’, Ann. Sci. École Norm. Sup. (4) 32(1) (1999), 71–86 (English, with English and French summaries). doi: 10.1016/S0012-9593(99)80009-3. MR1670591Google Scholar | DOI

[OP01] Ojanguren, M. and Panin, I., ‘Rationally trivial Hermitian spaces are locally trivial’, Math. Z. 237(1) (2001), 181–198. doi: 10.1007/PL00004859. MR1836777Google Scholar | DOI

[OPZ04] Ojanguren, M., Panin, I. and Zainoulline, K., ‘On the norm principle for quadratic forms’, J. Ramanujan Math. Soc. 19(4) (2004), 289–300. MR2125505Google Scholar

[Pan05] Panin, I., ‘Purity for multipliers, algebra and number theory’, Hindustan Book Agency, Delhi, 2005, 66–89. MR2193345Google Scholar

[Pan09] Panin, I., ‘Rationally isotropic quadratic spaces are locally isotropic’, Invent. Math. 176(2) (2009), 397–403. doi: 10.1007/s00222-008-0168-0. MR2495767.Google Scholar | DOI

[Pan15] Panin, I., ‘Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field’, Preprint, 2015. Available at https://www.math.uni-bielefeld.de/lag/man/559.pdf.Google Scholar

[Pan18] Panin, I., ‘On Grothendieck–Serre conjecture concerning principal bundles’, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, (World Sci. Publ., Hackensack, NJ, 2018), 201–221. MR3966763Google Scholar | DOI

[Pan19a] Panin, I. A., ‘Nice triples and moving lemmas for motivic spaces’, Izv. Math. 83(4) (2019), 796–829. doi: 10.1070/IM8819. MR3985694Google Scholar | DOI

[Pan19b] Panin, I., ‘Notes on a Grothendieck-Serre conjecture in mixed characteristic case’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 484 (2019), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 138–148; English transl., J. Math. Sci. (N. Y.) 252(6) (2021), 841–848. MR4053274.Google Scholar

[Pan20a] Panin, I. A., ‘Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field’, Izv. Ross. Akad. Nauk Ser. Mat. 84 (2020), no. 4, 169–186, DOI 10.4213/im8982 (Russian); English transl., Izv. Math. (2020), no. 4, 780–795. MR4133391Google Scholar

[Pan20b] Panin, I. A., ‘Two purity theorems and the Grothendieck–Serre’s conjecture concerning principal -bundles’, Mat. Sb. 211(12) (2020), 123–142. doi: 10.4213/sm9393 (Russian). MR4181078Google Scholar

[Poo04] Poonen, B., ‘Bertini theorems over finite fields’, Ann. of Math. (2) 160(3) (2004), 1099–1127. doi: 10.4007/annals.2004.160.1099. MR2144974Google Scholar | DOI

[PP10] Panin, I. and Pimenov, K., ‘Rationally isotropic quadratic spaces are locally isotropic: II’, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 515–523. MR2804263Google Scholar

[PP15] Panin, I. and Pimenov, K., ‘Rationally isotropic quadratic spaces are locally isotropic: III’, Algebra i Analiz 27(6) (2015), 234–241. doi: 10.1090/spmj/1433; English transl., St. Petersburg Math. J. (6) (2016), 1029–1034. MR3589229Google Scholar

[PS97] Panin, I. A. and Suslin, A. A., ‘On a conjecture of Grothendieck concerning Azumaya algebras’, Algebra i Analiz 9(4) (1997), 215–223 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (4) (1998), 851–858. MR1604322Google Scholar

[PS16] Panin, I. A. and Stavrova, A. K., ‘On the Grothendieck-Serre conjecture concerning principal G-bundles over semi-local Dedekind domains’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 443 (2016), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 29, 133–146; English transl., J. Math. Sci. (N.Y.) (4) (2017), 453–462. doi: 10.1007/s10958-017-3316-5. MR3507770.Google Scholar

[PSV15] Panin, I., Stavrova, A. and Vavilov, N., ‘On Grothendieck-Serre’s conjecture concerning principal G-bundles over reductive group schemes: I’, Compos. Math. 151(3) (2015), 535–567. doi: 10.1112/S0010437X14007635. MR3320571.Google Scholar | DOI

[Qui73] Quillen, D., ‘Higher algebraic K-theory. I’, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341 (Springer, Berlin, 1973), 85–147. MR0338129Google Scholar

[Rag94] Raghunathan, M. S., ‘Principal bundles admitting a rational section’, Invent. Math. 116(1–3) (1994), 409–423. doi: 10.1007/BF01231567. MR1253199.Google Scholar | DOI

[RR84] Raghunathan, M. S. and Ramanathan, A., ‘Principal bundles on the affine line’, Proc. Indian Acad. Sci. Math. Sci. 93(2–3) (1984), 137–145. doi: 10.1007/BF02840656. MR813075.Google Scholar | DOI

[Scu18] Scully, S., ‘The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields’, Proc. Amer. Math. Soc. 146(1) (2018), 1–13. doi: 10.1090/proc/13744. MR3723116.Google Scholar | DOI

[Ser58] Serre, J.-P., ‘Espaces fibrés algébriques’, Seminaire Claude Chevalley 3 1) (1958), 1–37 (French).Google Scholar

[SGA 3II] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152 (Springer-Verlag, Berlin-New York, 1970) (French). MR0274459 (43 #223b)Google Scholar

[SGA 3III new] Gille, P. and Polo, P. (eds.), Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8 (Société Mathématique de France, Paris, 2011) (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867622Google Scholar

[SGA 4III] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305 (Springer-Verlag, Berlin, 1973) (French). Séminaire de Géométrie Algébrique du Bois-Marie, 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR0354654 (50 #7132).Google Scholar

[SP] De Jong, A. J. et al., The Stacks Project. Available at http://stacks.math.columbia.edu.Google Scholar

[Tsy19] Tsybyshev, A. E., ‘A step toward the non-equicharacteristic Grothendieck-Serre conjecture’, Algebra i Analiz 31 1) (2019), 246–254. doi: 10.1090/spmj/1591 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (1) (2020), 181–187. MR3932824Google Scholar

[Zai00] Zainullin, K. V., ‘On Grothendieck’s conjecture on principal homogeneous spaces for some classical algebraic groups’, Algebra i Analiz 12(1) (2000), 150–184 (Russian, with Russian summary); English transl., St. Petersburg Math. J. (1) (2001), 117–143. MR1758566Google Scholar

[Zai05] Zainoulline, K., ‘On Knebusch’s norm principle for quadratic forms over semi-local rings’, Math. Z. 251(2) (2005), 415–425. doi: 10.1007/s00209-005-0809-6. MR2191034Google Scholar

Cité par Sources :