Virasoro constraints for stable pairs on toric threefolds
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Using new explicit formulas for the stationary Gromov–Witten/Pandharipande–Thomas ($\mathrm {GW}/{\mathrm {PT}}$) descendent correspondence for nonsingular projective toric threefolds, we show that the correspondence intertwines the Virasoro constraints in Gromov–Witten theory for stable maps with the Virasoro constraints for stable pairs proposed in [18]. Since the Virasoro constraints in Gromov–Witten theory are known to hold in the toric case, we establish the stationary Virasoro constraints for the theory of stable pairs on toric threefolds. As a consequence, new Virasoro constraints for tautological integrals over Hilbert schemes of points on surfaces are also obtained.
@article{10_1017_fmp_2022_4,
     author = {Miguel Moreira and Alexei Oblomkov and Andrei Okounkov and Rahul Pandharipande},
     title = {Virasoro constraints for stable pairs on toric threefolds},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/}
}
TY  - JOUR
AU  - Miguel Moreira
AU  - Alexei Oblomkov
AU  - Andrei Okounkov
AU  - Rahul Pandharipande
TI  - Virasoro constraints for stable pairs on toric threefolds
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/
DO  - 10.1017/fmp.2022.4
LA  - en
ID  - 10_1017_fmp_2022_4
ER  - 
%0 Journal Article
%A Miguel Moreira
%A Alexei Oblomkov
%A Andrei Okounkov
%A Rahul Pandharipande
%T Virasoro constraints for stable pairs on toric threefolds
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/
%R 10.1017/fmp.2022.4
%G en
%F 10_1017_fmp_2022_4
Miguel Moreira; Alexei Oblomkov; Andrei Okounkov; Rahul Pandharipande. Virasoro constraints for stable pairs on toric threefolds. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.4

[1] Behrend, K. and Fantechi, B., The intrinsic normal cone’, Invent. Math. 128 (1997), 45–88.Google Scholar | DOI

[2] Bridgeland, T., ‘Hall algebras and curve-counting invariants’, JAMS 24 (2011), 969–998.Google Scholar

[3] Eguchi, T., Hori, K. and Xiong, C., ‘Quantum cohomology and Virasoro algebra’, B 402(1–2) (1997), 71–80.Google Scholar | DOI

[4] Faber, C. and Pandharipande, R., ‘Hodge integrals and Gromov–Witten theory’, Invent. Math. 139 (2000), 173–199.Google Scholar | DOI

[5] Fulton, W. and Pandharipande, R., ‘Notes on stable maps and quantum cohomology’, Proc. Sympos. Pure Math. 62 (1995), 45–96.Google Scholar

[6] Getzler, E., ‘The equivariant Toda lattice’, Publ. Res. Inst. Math. Sci. 40(2) (2004), 507–536.Google Scholar | DOI

[7] Getzler, E. and Pandharipande, R., ‘Virasoro constraints and the Chern classes of the Hodge bundle’, Nuclear Phys. B 530 (1998), 701–714.Google Scholar | DOI

[8] Givental, A., ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 1(4) (2001), 551–568.Google Scholar | DOI

[9] Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135(2) (1999), 487–518.Google Scholar | DOI

[10] Iritani, H., ‘Convergence of quantum cohomology by quantum Lefschetz’, Journal für die Reine und Angewandte Mathematik 610 (2007), 29–69.Google Scholar

[11] Kassel, Ch., Quantum Groups, Graduate Texts in Mathematics, vol. 155 (Springer-Verlag, New York, 1995).Google Scholar | DOI

[12] Kontsevich, M., ‘Intersection theory on the moduli space of curves and the matrix Airy function’, Comm. Math. Phys. 147(1) (1992), 1—23.Google Scholar | DOI

[13] Li, J. and Tian, G., ‘Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties’, JAMS 11 (1998), 119–174.Google Scholar

[14] Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., ‘Gromov–Witten theory and Donaldson–Thomas theory. I’, Compos. Math. 142(5) (2006), 1263–1285.Google Scholar | DOI

[15] Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., ‘Gromov–Witten theory and Donaldson–Thomas theory. II’, Compos. Math. 142(5) (2006), 1286–1304.Google Scholar | DOI

[16] Maulik, D., Oblomkov, A., Okounkov, A. and Pandharipande, R., ‘GW/DT correspondence for toric varieties’, Invent. Math. 186( 2) (2011), 435–479.Google Scholar | DOI

[17] Moreira, M., ‘Virasoro constraints for the stable pairs descendent theory of simply connected 3-folds (with applications to the Hilbert scheme of points of a surface)’, J. London Math. Soc. (2021), to appear.Google Scholar | DOI

[18] Oblomkov, A., Okounkov, A. and Pandharipande, R.. ‘GW/PT descendent correspondence via vertex operators’, Comm. Math. Phys 374 (2020), 1321–1359.Google Scholar | DOI

[19] Okounkov, A. and Pandharipande, R., ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47–108.Google Scholar | DOI

[20] Pandharipande, R.. ‘Three questions in Gromov–Witten theory’, in Proceedings of the ICM, vol. II (Higher Education Press, Beijing, 2002), 503–512.Google Scholar

[21] Pandharipande, R., ‘Descendents for stable pairs on 3-folds, modern geometry: A celebration of the work of Simon Donaldson’, Proc. Sympos. Pure Math. 99 (2018), 251–288.Google Scholar | arXiv

[22] Pandharipande, R., ‘Cohomological field theory calculations , in Proceedings of the ICM (Rio de Janeiro 2018), Plenary Lectures, vol. I (World Sci. Publications, Hackensack, NJ, 2018), 869–898.Google Scholar

[23] Pandharipande, R. and Pixton, A., ‘Descendents on local curves: Rationality’, Comp. Math. 149 (2013), 81–124.Google Scholar | DOI

[24] Pandharipande, R. and Pixton, A., Descendents on Local Curves: Stationary Theory in Geometry and Arithmetic, EMS Ser. Congr. Rep., (Eur. Math. Soc., Zürich, 2012), 283–307.Google Scholar

[25] Pandharipande, R. and Pixton, A., ‘Descendent theory for stable pairs on toric 3-folds’, Jour. Math. Soc. Japan 65 (2013), 1337–1372.Google Scholar

[26] Pandharipande, R. and Pixton, A., ‘Gromov–Witten/Pairs descendent correspondence for toric 3-folds’, Geom. Topol. 18 (2014), 2747–2821.Google Scholar | DOI

[27] Pandharipande, R. and Pixton, A., ‘Gromov–Witten/Pairs correspondence for the quintic’, JAMS 30 (2017), 389–449.Google Scholar

[28] Pandharipande, R. and Thomas, R. P., ‘Curve counting via stable pairs in the derived category’, Invent Math. 178 (2009), 407–447.Google Scholar | DOI

[29] Pandharipande, R. and Thomas, R. P., ‘13/2 ways of counting curves’, in Moduli Spaces, LMS Lecture Note Ser. 411 (Cambridge University Press, Cambridge, 2014), 282–333.Google Scholar | DOI

[30] Teleman, C., ‘The structure of 2D semi-simple field theories’, Invent. Math. 188(3) (2012), 525–588.Google Scholar | DOI

[31] Toda, Y., ‘Curve counting theories via stable objects I: DT/PT correspondence’, JAMS 23 (2010), 1119–1157.Google Scholar

[32] Van Bree, D., ‘Virasoro constraints for moduli spaces of sheaves on surfaces’, Preprint, 2021, .Google Scholar | arXiv

[33] Witten, E., ‘Two-dimensional gravity and intersection theory on moduli space’, Surveys Differential Geom., 1 (1990), 243–310.Google Scholar | DOI

Cité par Sources :