Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_4,
author = {Miguel Moreira and Alexei Oblomkov and Andrei Okounkov and Rahul Pandharipande},
title = {Virasoro constraints for stable pairs on toric threefolds},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/}
}
TY - JOUR AU - Miguel Moreira AU - Alexei Oblomkov AU - Andrei Okounkov AU - Rahul Pandharipande TI - Virasoro constraints for stable pairs on toric threefolds JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/ DO - 10.1017/fmp.2022.4 LA - en ID - 10_1017_fmp_2022_4 ER -
%0 Journal Article %A Miguel Moreira %A Alexei Oblomkov %A Andrei Okounkov %A Rahul Pandharipande %T Virasoro constraints for stable pairs on toric threefolds %J Forum of Mathematics, Pi %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.4/ %R 10.1017/fmp.2022.4 %G en %F 10_1017_fmp_2022_4
Miguel Moreira; Alexei Oblomkov; Andrei Okounkov; Rahul Pandharipande. Virasoro constraints for stable pairs on toric threefolds. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.4
[1] and , ‘ The intrinsic normal cone’, Invent. Math. 128 (1997), 45–88.Google Scholar | DOI
[2] , ‘Hall algebras and curve-counting invariants’, JAMS 24 (2011), 969–998.Google Scholar
[3] , and , ‘Quantum cohomology and Virasoro algebra’, B 402(1–2) (1997), 71–80.Google Scholar | DOI
[4] and , ‘Hodge integrals and Gromov–Witten theory’, Invent. Math. 139 (2000), 173–199.Google Scholar | DOI
[5] and , ‘Notes on stable maps and quantum cohomology’, Proc. Sympos. Pure Math. 62 (1995), 45–96.Google Scholar
[6] , ‘The equivariant Toda lattice’, Publ. Res. Inst. Math. Sci. 40(2) (2004), 507–536.Google Scholar | DOI
[7] and , ‘Virasoro constraints and the Chern classes of the Hodge bundle’, Nuclear Phys. B 530 (1998), 701–714.Google Scholar | DOI
[8] , ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 1(4) (2001), 551–568.Google Scholar | DOI
[9] and , ‘Localization of virtual classes’, Invent. Math. 135(2) (1999), 487–518.Google Scholar | DOI
[10] , ‘Convergence of quantum cohomology by quantum Lefschetz’, Journal für die Reine und Angewandte Mathematik 610 (2007), 29–69.Google Scholar
[11] , Quantum Groups, Graduate Texts in Mathematics, vol. 155 (Springer-Verlag, New York, 1995).Google Scholar | DOI
[12] , ‘Intersection theory on the moduli space of curves and the matrix Airy function’, Comm. Math. Phys. 147(1) (1992), 1—23.Google Scholar | DOI
[13] and , ‘Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties’, JAMS 11 (1998), 119–174.Google Scholar
[14] , , and , ‘Gromov–Witten theory and Donaldson–Thomas theory. I’, Compos. Math. 142(5) (2006), 1263–1285.Google Scholar | DOI
[15] , , and , ‘Gromov–Witten theory and Donaldson–Thomas theory. II’, Compos. Math. 142(5) (2006), 1286–1304.Google Scholar | DOI
[16] , , and , ‘GW/DT correspondence for toric varieties’, Invent. Math. 186( 2) (2011), 435–479.Google Scholar | DOI
[17] , ‘Virasoro constraints for the stable pairs descendent theory of simply connected 3-folds (with applications to the Hilbert scheme of points of a surface)’, J. London Math. Soc. (2021), to appear.Google Scholar | DOI
[18] , and . ‘GW/PT descendent correspondence via vertex operators’, Comm. Math. Phys 374 (2020), 1321–1359.Google Scholar | DOI
[19] and , ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47–108.Google Scholar | DOI
[20] . ‘Three questions in Gromov–Witten theory’, in Proceedings of the ICM, vol. II (Higher Education Press, Beijing, 2002), 503–512.Google Scholar
[21] , ‘Descendents for stable pairs on 3-folds, modern geometry: A celebration of the work of Simon Donaldson’, Proc. Sympos. Pure Math. 99 (2018), 251–288.Google Scholar | arXiv
[22] , ‘Cohomological field theory calculations ’, in Proceedings of the ICM (Rio de Janeiro 2018), Plenary Lectures, vol. I (World Sci. Publications, Hackensack, NJ, 2018), 869–898.Google Scholar
[23] and , ‘Descendents on local curves: Rationality’, Comp. Math. 149 (2013), 81–124.Google Scholar | DOI
[24] and , Descendents on Local Curves: Stationary Theory in Geometry and Arithmetic, EMS Ser. Congr. Rep., (Eur. Math. Soc., Zürich, 2012), 283–307.Google Scholar
[25] and , ‘Descendent theory for stable pairs on toric 3-folds’, Jour. Math. Soc. Japan 65 (2013), 1337–1372.Google Scholar
[26] and , ‘Gromov–Witten/Pairs descendent correspondence for toric 3-folds’, Geom. Topol. 18 (2014), 2747–2821.Google Scholar | DOI
[27] and , ‘Gromov–Witten/Pairs correspondence for the quintic’, JAMS 30 (2017), 389–449.Google Scholar
[28] and , ‘Curve counting via stable pairs in the derived category’, Invent Math. 178 (2009), 407–447.Google Scholar | DOI
[29] and , ‘13/2 ways of counting curves’, in Moduli Spaces, LMS Lecture Note Ser. 411 (Cambridge University Press, Cambridge, 2014), 282–333.Google Scholar | DOI
[30] , ‘The structure of 2D semi-simple field theories’, Invent. Math. 188(3) (2012), 525–588.Google Scholar | DOI
[31] , ‘Curve counting theories via stable objects I: DT/PT correspondence’, JAMS 23 (2010), 1119–1157.Google Scholar
[32] , ‘Virasoro constraints for moduli spaces of sheaves on surfaces’, Preprint, 2021, .Google Scholar | arXiv
[33] , ‘Two-dimensional gravity and intersection theory on moduli space’, Surveys Differential Geom., 1 (1990), 243–310.Google Scholar | DOI
Cité par Sources :