Combinatorial and harmonic-analytic methods for integer tilings
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

A finite set of integers A tiles the integers by translations if $\mathbb {Z}$ can be covered by pairwise disjoint translated copies of A. Restricting attention to one tiling period, we have $A\oplus B=\mathbb {Z}_M$ for some $M\in \mathbb {N}$ and $B\subset \mathbb {Z}$. This can also be stated in terms of cyclotomic divisibility of the mask polynomials $A(X)$ and $B(X)$ associated with A and B.In this article, we introduce a new approach to a systematic study of such tilings. Our main new tools are the box product, multiscale cuboids and saturating sets, developed through a combination of harmonic-analytic and combinatorial methods. We provide new criteria for tiling and cyclotomic divisibility in terms of these concepts. As an application, we can determine whether a set A containing certain configurations can tile a cyclic group $\mathbb {Z}_M$, or recover a tiling set based on partial information about it. We also develop tiling reductions where a given tiling can be replaced by one or more tilings with a simpler structure. The tools introduced here are crucial in our proof in [24] that all tilings of period $(pqr)^2$, where $p,q,r$ are distinct odd primes, satisfy a tiling condition proposed by Coven and Meyerowitz [2].
@article{10_1017_fmp_2022_3,
     author = {Izabella {\L}aba and Itay Londner},
     title = {Combinatorial and harmonic-analytic methods for integer tilings},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.3/}
}
TY  - JOUR
AU  - Izabella Łaba
AU  - Itay Londner
TI  - Combinatorial and harmonic-analytic methods for integer tilings
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.3/
DO  - 10.1017/fmp.2022.3
LA  - en
ID  - 10_1017_fmp_2022_3
ER  - 
%0 Journal Article
%A Izabella Łaba
%A Itay Londner
%T Combinatorial and harmonic-analytic methods for integer tilings
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.3/
%R 10.1017/fmp.2022.3
%G en
%F 10_1017_fmp_2022_3
Izabella Łaba; Itay Londner. Combinatorial and harmonic-analytic methods for integer tilings. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.3

[1] Bhattacharya, S., ‘Periodicity and decidability of tilings of ’, Amer. J. Math. 142(1) (2020), 255–266.Google Scholar | DOI

[2] Coven, E. and Meyerowitz, A., ‘Tiling the integers with translates of one finite set’, J. Algebra 212(1) (1999), 161–174.Google Scholar | DOI

[3] De Bruijn, N. G., ‘On the factorization of cyclic groups’, Indag. Math. 15 (1953), 370–377.Google Scholar | DOI

[4] Dutkay, D. E. and Kraus, I., ‘On spectral sets of integers’, in Frames and Harmonic Analysis, Contemporary Mathematics vol. 706 (American Mathematical Society, Providence, RI, 2018), 215–234.Google Scholar | DOI

[5] Dutkay, D. E. and Lai, C.-K., ‘Some reductions of the spectral set conjecture to integers’, Math. Proc. Cambridge Philos. Soc. 156(1) (2014), 123–135.Google Scholar | DOI

[6] Fallon, T., Kiss, G. and Somlai, G., ‘Spectral sets and tiles in ’, Preprint, 2021, .Google Scholar | arXiv

[7] Fallon, T., Mayeli, A. and Villano, D., ‘The Fuglede conjecture holds in for ’, Proc. Amer. Math. Soc., forthcoming.Google Scholar

[8] Farkas, B., Matolcsi, M. and Móra, P., ‘On Fuglede’s conjecture and the existence of universal spectra’, J. Fourier Anal. Appl. 12(5) (2006), 483–494.Google Scholar | DOI

[9] Farkas, B. and Révész, S. G., ‘Tiles with no spectra in dimension 4’,Math. Scand. 98(1) (2006), 44–52.Google Scholar | DOI

[10] Fuglede, B., ‘Commuting self-adjoint partial differential operators and a group-theoretic problem’, J. Funct. Anal. 16 (1974), 101–121.Google Scholar | DOI

[11] Granville, A., Łaba, I. and Wang, Y., ‘A characterization of finite sets that tile the integers, Preprint, 2001, .Google Scholar | arXiv

[12] Greenfeld, R. and Lev, N., ‘Fuglede’s spectral set conjecture for convex polytopes’, Anal. PDE 10(6) (2017), 1497–1538.Google Scholar | DOI

[13] Greenfeld, R. and Tao, T., ‘The structure of translational tilings in ’, Discrete Anal. 2021, Paper No. 16, 28 pp.Google Scholar

[14] Iosevich, A., Katz, N. and Tao, T., ‘The Fuglede spectral conjecture holds for convex planar domains’, Math. Res. Lett. 10(5-6) (2003), 559–569.Google Scholar | DOI

[15] Iosevich, A., Mayeli, A. and Pakianathan, J., ‘The Fuglede conjecture holds in ’, Anal. PDE 10(4) (2017), 757–764.Google Scholar | DOI

[16] Kiss, G., Malikiosis, R. D., Somlai, G. and Vizer, M., ‘On the discrete Fuglede and Pompeiu problems’, Anal. PDE 13(3) (2020), 765–788.Google Scholar | DOI

[17] Kiss, G., Malikiosis, R. D., Somlai, G. and Vizer, M., ‘Fuglede’s conjecture holds for cyclic groups of order ’, Preprint, 2000, .Google Scholar | arXiv

[18] Kiss, G. and Somlai, S., ‘Fuglede’s conjecture holds on ’, Proc. Amer. Math. Soc. 149(10) (2021), 4181–4188.Google Scholar | DOI

[19] Kolountzakis, M. N. and Lev, N., ‘Tiling by translates of a function: results and open problems’, Discrete Anal. 2021, Paper No. 12, 24 pp.Google Scholar

[20] Kolountzakis, M. N. and Matolcsi, M., ‘Complex Hadamard matrices and the spectral set conjecture’, Collect. Math. (2006), 281–291.Google Scholar

[21] Kolountzakis, M. N. and Matolcsi, M., ‘Tiles with no spectra’, Forum Math. 18(3) (2006), 519–528.Google Scholar | DOI

[22] Konyagin, S. and Łaba, I., ‘Spectra of certain types of polynomials and tiling the integers with translates of finite sets’, J. Number Theory 103(2) (2003), 267–280.Google Scholar | DOI

[23] Łaba, I., ‘The spectral set conjecture and multiplicative properties of roots of polynomials’, J. London Math. Soc. (2) 65 (2002), 661–671.Google Scholar | DOI

[24] Łaba, I. and Londner, I., ‘The Coven-Meyerowitz tiling conditions for 3 odd prime factors’, Preprint, 2021, .Google Scholar | arXiv

[25] Lagarias, J.C. and Szabó, S., ‘Universal spectra and Tijdeman’s conjecture on factorization of cyclic groups’, J. Fourier Anal. Appl. 1(7) (2001), 63–70.Google Scholar | DOI

[26] Lagarias, J. C. and Wang, Y., ‘Tiling the line with translates of one tile’, Invent. Math. 124(1-3) (1996), 341–365.Google Scholar | DOI

[27] Lagarias, J. C. and Wang, Y., ‘Spectral sets and factorization of finite abelian groups’, J. Funct. Anal. 145(1) (1997), 73–98.Google Scholar | DOI

[28] Lam, T. Y. and Leung, K. H., ‘On vanishing sums of roots of unity’, J. Algebra 224(1) (2000), 91–109.Google Scholar | DOI

[29] Lev, N. and Matolcsi, M., ‘The Fuglede conjecture for convex domains is true in all dimensions’, Acta Math., forthcoming, .Google Scholar | arXiv

[30] Malikiosis, R. D., ‘On the structure of spectral and tiling subsets of cyclic groups’, Preprint, 2020, .Google Scholar | arXiv

[31] Malikiosis, R. D. and Kolountzakis, M. N., ‘Fuglede’s conjecture on cyclic groups of order ’, Discrete Anal. 2017, Paper No. 12, 16 pp.Google Scholar | DOI

[32] Mann, H. B., ‘On linear relations between roots of unity’, Mathematika 12(2) (1965), 107–117.Google Scholar | DOI

[33] Matolcsi, M., ‘Fuglede’s conjecture fails in dimension 4’, Proc. Amer. Math. Soc. 133(10) (2005), 3021–3026.Google Scholar | DOI

[34] Newman, D. J., ‘Tesselation of integers’, J. Number Theory 9(1) (1977), 107–111.Google Scholar | DOI

[35] Rédei, L., ‘Über das Kreisteilungspolynom’, Acta Math. Hungar. 5 (1954), 27–28.Google Scholar | DOI

[36] Rédei, L., ‘Natürliche Basen des Kreisteilungskörpers’, Abh. Math. Sem. Univ. Hambg. 23 (1959), 180–200.Google Scholar

[37] Sands, A., ‘On Keller’s conjecture for certain cyclic groups’, Proc. Edinb. Math. Soc. (2) 22(1) (1979).Google Scholar | DOI

[38] Schoenberg, I. J., ‘A note on the cyclotomic polynomial’, Mathematika 11 (1964), 131–136.Google Scholar | DOI

[39] Shi, R., ‘Fuglede’s conjecture holds on cyclic groups ’, Discrete Anal. 2019, Paper No. 14, 14 pp.Google Scholar

[40] Shi, R., ‘Equi-distribution on planes and spectral set conjecture on ’, J. Lond. Math. Soc. (2) 102(2) (2020), 1030–1046.Google Scholar | DOI

[41] Somlai, G., ‘Spectral sets in tile’, Preprint, 2019, .Google Scholar | arXiv

[42] Steinberger, J. P., ‘Minimal vanishing sums of roots of unity with large coefficients’, Proc. Lond. Math. Soc. (3) 97(3) (2008), 689–717.Google Scholar | DOI

[43] Szabó, S., ‘A type of factorization of finite abelian groups’, Discrete Math. 54(1) (1985), 121–124.Google Scholar | DOI

[44] Szabó, S., Topics in Factorization of Abelian Groups (Hindustan Book Agency, Basel, 2004).Google Scholar | DOI

[45] Tao, T., ‘Fuglede’s conjecture is false in 5 and higher dimensions’, Math. Res. Lett. 11(2-3) (2004), 251–258.Google Scholar | DOI

[46] Tao, T., ‘Some notes on the Coven-Meyerowitz conjecture’ (2011). URL:https://terrytao.wordpress.com/2011/11/19/some-notes-on-the-coven-meyerowitz-conjecture/.Google Scholar

[47] Tijdeman, R., ‘Decomposition of the integers as a direct sum of two subsets’, in Number Theory (Paris 1992–1993), London Mathematical Society Lecture Note Series vol. 215 (Cambridge University Press, Cambridge, UK, 1995), 261–276.Google Scholar | DOI

[48] Zhang, T., ‘Fuglede’s conjecture holds in ’, Preprint, 2021, .Google Scholar | arXiv

Cité par Sources :