Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_21,
     author = {Bhargav Bhatt and Akhil Mathew},
     title = {Syntomic complexes and p-adic \'etale {Tate} twists},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2022.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.21/}
}
                      
                      
                    Bhargav Bhatt; Akhil Mathew. Syntomic complexes and p-adic étale Tate twists. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2022.21
[AMMN22] , , and , ‘On the Beilinson fiber square’, Duke Math. J. 171(18) (2022), 3707–3806. MR4516307.Google Scholar
[Avr99] , ‘Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology’, Ann. of Math. (2) 150(2) (1999), 455–487. MR 1726700Google Scholar | DOI
[Bha12] , ‘-adic derived de Rham cohomology’, Preprint, 2012, .Google Scholar | arXiv
[BK86] and , ‘-adic étale cohomology’, Inst. Hautes Études Sci. Publ. Math. (63) (1986), 107–152. MR 849653Google Scholar | DOI
[BL22a] and , ‘Absolute prismatic cohomology’, Preprint 2022, .Google Scholar | arXiv | DOI
[BL22b] and , ‘The prismatization of -adic formal schemes’, Preprint, 2022, .Google Scholar | arXiv
[BLM21] , and , ‘Revisiting the de Rham-Witt complex’, Astérisque (424) (2021), viii+165. MR 4275461Google Scholar
[BMS18] , and , ‘Integral -adic Hodge theory’, Publ. Math. Inst. Hautes Études Sci. 128(1) (2018), 1, 219–397.Google Scholar | DOI
[BMS19] , and , ‘Topological Hochschild homology and integral -adic Hodge theory’, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030Google Scholar | DOI
[Bou22] , ‘Cartier smoothness in prismatic cohomology’, Preprint, .Google Scholar | arXiv
[BS22] and , ‘Prisms and prismatic cohomology’, Ann. of Math. (2) 196(3) (2022), 1135–1275. MR 4502597Google Scholar
[CDN21] , and , ‘Integral -adic étale cohomology of Drinfeld symmetric spaces’, Duke Math. J. 170(3) (2021), 575–613. MR 4255044Google Scholar | DOI
[CMM21] , and , ‘ -theory and topological cyclic homology of Henselian pairs’, J. Amer. Math. Soc. 34(2) (2021), 411–473. MR 4280864Google Scholar | DOI
[CN17] and , ‘Syntomic complexes and -adic nearby cycles’, Invent. Math. 208(1) (2017), 1–108. MR 3621832Google Scholar | DOI
[DM17] and , ‘Finite generation and continuity of topological Hochschild and cyclic homology’, Ann. Sci. Éc. Norm. Supér. (4) 50(1) (2017), 201–238. MR 3621430Google Scholar
[Dri20] , ‘Prismatization’, Preprint, 2020, .Google Scholar | arXiv
[EN19] and , ‘Syntomic cohomology and -adic motivic cohomology’, Algebr. Geom. 6(1) (2019), 100–131. MR 3904801Google Scholar
[FM87] and , ‘-adic periods and -adic étale cohomology’, Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67 (Amer. Math. Soc., Providence, RI, 1987), 179–207. MR 902593Google Scholar
[Gab92] , ‘-theory of Henselian local rings and Henselian pairs’, Algebraic -Theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126 (Amer. Math. Soc., Providence, RI, 1992), 59–70. MR 1156502Google Scholar
[Gei04] , ‘Motivic cohomology over Dedekind rings’, Math. Z. 248(4) (2004), 773–794. MR 2103541Google Scholar
[GH99] and , ‘Topological cyclic homology of schemes’, Algebraic -theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67 (Amer. Math. Soc., Providence, RI, 1999), 41–87. MR 1743237Google Scholar | DOI
[GH06] and , ‘The de Rham–Witt complex and -adic vanishing cycles’, J. Amer. Math. Soc. 19(1) (2006), 1–36. MR 2169041Google Scholar | DOI
[Gro85] , ‘Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique’, Mém. Soc. Math. France (N.S.) (21) (1985), 87. MR 844488Google Scholar
[HJ21] and , ‘A Jacobian criterion for nonsingularity in mixed characteristic’, Preprint, 2021, .Google Scholar | arXiv
[HM03] and , ‘On the -theory of local fields’, Ann. of Math. (2) 158(1) (2003), 1–113. MR 1998478Google Scholar | DOI
[HM04] and , ‘On the De Rham–Witt complex in mixed characteristic’, Ann. Sci. École Norm. Sup. (4) 37(1) (2004), 1–43. MR 2050204Google Scholar | DOI
[HN20] and , ‘Topological cyclic homology’, Handbook of Homotopy Theory, CRC Press/Chapman Hall Handb. Math. Ser. (CRC Press, Boca Raton, FL, 2020), 619–656. MR 4197995Google Scholar | DOI
[HW22] and , ‘Redshift and multiplication for truncated Brown–Peterson spectra’, Ann. of Math. (2) 196(3) (2022), 1277–1351. MR 4503327Google Scholar
[Hyo88] , ‘A note on -adic étale cohomology in the semistable reduction case’, Invent. Math. 91(3) (1988), 543–557. MR 928497Google Scholar
[Ill71] , Complexe cotangent et déformations. I , Lecture Notes in Mathematics, vol. 239 (Springer-Verlag, Berlin-New York, 1971). MR 0491680Google Scholar
[Ill79] , Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12(4) (1979), 501–661. MR 565469Google Scholar | DOI
[Iye07] , ‘André–Quillen homology of commutative algebras’, Interactions between Homotopy Theory and Algebra, Contemp. Math., vol. 436 (Amer. Math. Soc., Providence, RI, 2007), 203–234. MR 2355775Google Scholar | DOI
[Kat87] , ‘On -adic vanishing cycles (application of ideas of Fontaine–Messing)’, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10 (North-Holland, Amsterdam, 1987), 207–251. MR 946241Google Scholar | DOI
[KM21] and , ‘-theory of valuation rings’, Compos. Math. 157(6) (2021), 1121–1142. MR 4264079Google Scholar
[KST21] , and , ‘Towards Vorst’s conjecture in positive characteristic’, Compos. Math. 157(6) (2021), 1143–1171. MR 4270122Google Scholar | DOI
[Kun76] , ‘On Noetherian rings of characteristic ’, Amer. J. Math. 98(4) (1976), 999–1013. MR 432625Google Scholar | DOI
[Kur87] , ‘A note on -adic étale cohomology’, Proc. Japan Acad. Ser. A Math. Sci. 63(7) (1987), 275–278. MR 931263Google Scholar | DOI
[LM21] and , ‘Milnor -theory of -adic rings’, Preprint, 2021, .Google Scholar | arXiv
[Lur18] , Elliptic Cohomology II: Orientations URL: https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf.Google Scholar
[LW22] and , ‘Topological cyclic homology of local fields’, Invent. Math. 230(2) (2022), 851–932. MR 4493328Google Scholar | DOI
[Mat22] , ‘Some recent advances in topological Hochschild homology’, Bull. Lond. Math. Soc. 54(1) (2022), 1–44. MR 4396920Google Scholar
[Mil76] , ‘Duality in the flat cohomology of a surface’, Ann. Sci. École Norm. Sup. (4) 9(2) (1976), 171–201. MR 460331Google Scholar
[Niz06] , ‘-adic Motivic Cohomology in Arithmetic’, International Congress of Mathematicians. vol. II (Eur. Math. Soc., Zürich, 2006), 459–472. MR 2275605Google Scholar
[Niz12] , ‘-theory of log-schemes II: Log-syntomic -theory’, Adv. Math. 230(4–6) (2012), 1646–1672. MR 2927351Google Scholar | DOI
[Sai22] , ‘Frobenius–Witt differentials and regularity’, Algebra Number Theory 16(2) (2022), 369–391. MR 4412577Google Scholar
[Sat05] , ‘Higher-dimensional arithmetic using -adic étale Tate twists’, Homology Homotopy Appl. 7(3) (2005), 173–187. MR 2205174Google Scholar | DOI
[Sat07] , ‘-adic étale Tate twists and arithmetic duality’, Ann. Sci. École Norm. Sup. (4) 40(4) (2007), 519–588. With an appendix by Kei Hagihara. MR 2191526Google Scholar
[Sch94] , ‘-adic points of motives’, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55 (Amer. Math. Soc., Providence, RI, 1994), 225–249. MR 1265555Google Scholar
[SS20] and , ‘On -adic vanishing cycles of log smooth families’, Tunis. J. Math. 2(2) (2020), 309–335. MR 3990821Google Scholar | DOI
[Sta19] The Stacks Project authors, The Stacks Project, https://stacks.math.columbia.edu, 2019.Google Scholar
[Sus83] , ‘On the -theory of algebraically closed fields’, Invent. Math. 73(2) (1983), 241–245. MR 714090Google Scholar
[Tat76] , ‘Relations between and Galois cohomology’, Invent. Math. 36 (1976), 257–274. MR 429837Google Scholar | DOI
[Tsu99] , ‘-adic étale cohomology and crystalline cohomology in the semi-stable reduction case’, Invent. Math. 137(2) (1999), 233–411. MR 1705837Google Scholar
Cité par Sources :
