Syntomic complexes and p-adic étale Tate twists
Forum of Mathematics, Pi, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

The primary goal of this paper is to identify syntomic complexes with the p-adic étale Tate twists of Geisser–Sato–Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we call ‘F-smooth’. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology of regular schemes.
@article{10_1017_fmp_2022_21,
     author = {Bhargav Bhatt and Akhil Mathew},
     title = {Syntomic complexes and p-adic \'etale {Tate} twists},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fmp.2022.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.21/}
}
TY  - JOUR
AU  - Bhargav Bhatt
AU  - Akhil Mathew
TI  - Syntomic complexes and p-adic étale Tate twists
JO  - Forum of Mathematics, Pi
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.21/
DO  - 10.1017/fmp.2022.21
LA  - en
ID  - 10_1017_fmp_2022_21
ER  - 
%0 Journal Article
%A Bhargav Bhatt
%A Akhil Mathew
%T Syntomic complexes and p-adic étale Tate twists
%J Forum of Mathematics, Pi
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.21/
%R 10.1017/fmp.2022.21
%G en
%F 10_1017_fmp_2022_21
Bhargav Bhatt; Akhil Mathew. Syntomic complexes and p-adic étale Tate twists. Forum of Mathematics, Pi, Tome 11 (2023). doi: 10.1017/fmp.2022.21

[AMMN22] Antieau, B., Mathew, A., Morrow, M. and Nikolaus, T., ‘On the Beilinson fiber square’, Duke Math. J. 171(18) (2022), 3707–3806. MR4516307.Google Scholar

[Avr99] Avramov, L. L., ‘Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology’, Ann. of Math. (2) 150(2) (1999), 455–487. MR 1726700Google Scholar | DOI

[Bha12] Bhatt, B., ‘-adic derived de Rham cohomology’, Preprint, 2012, .Google Scholar | arXiv

[BK86] Bloch, S. and Kato, K., ‘-adic étale cohomology’, Inst. Hautes Études Sci. Publ. Math. (63) (1986), 107–152. MR 849653Google Scholar | DOI

[BL22a] Bhatt, B. and Lurie, J., ‘Absolute prismatic cohomology’, Preprint 2022, .Google Scholar | arXiv | DOI

[BL22b] Bhatt, B. and Lurie, J., ‘The prismatization of -adic formal schemes’, Preprint, 2022, .Google Scholar | arXiv

[BLM21] Bhatt, B., Lurie, J. and Mathew, A., ‘Revisiting the de Rham-Witt complex’, Astérisque (424) (2021), viii+165. MR 4275461Google Scholar

[BMS18] Bhatt, B., Morrow, M. and Scholze, P., ‘Integral -adic Hodge theory’, Publ. Math. Inst. Hautes Études Sci. 128(1) (2018), 1, 219–397.Google Scholar | DOI

[BMS19] Bhatt, B., Morrow, M. and Scholze, P., ‘Topological Hochschild homology and integral -adic Hodge theory’, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030Google Scholar | DOI

[Bou22] Bouis, V., ‘Cartier smoothness in prismatic cohomology’, Preprint, .Google Scholar | arXiv

[BS22] Bhatt, B. and Scholze, P., ‘Prisms and prismatic cohomology’, Ann. of Math. (2) 196(3) (2022), 1135–1275. MR 4502597Google Scholar

[CDN21] Colmez, P., Dospinescu, G. and Nizioł, W., ‘Integral -adic étale cohomology of Drinfeld symmetric spaces’, Duke Math. J. 170(3) (2021), 575–613. MR 4255044Google Scholar | DOI

[CMM21] Clausen, D., Mathew, A. and Morrow, M., ‘ -theory and topological cyclic homology of Henselian pairs’, J. Amer. Math. Soc. 34(2) (2021), 411–473. MR 4280864Google Scholar | DOI

[CN17] Colmez, P. and Nizioł, W., ‘Syntomic complexes and -adic nearby cycles’, Invent. Math. 208(1) (2017), 1–108. MR 3621832Google Scholar | DOI

[DM17] Dundas, B. I. and Morrow, M., ‘Finite generation and continuity of topological Hochschild and cyclic homology’, Ann. Sci. Éc. Norm. Supér. (4) 50(1) (2017), 201–238. MR 3621430Google Scholar

[Dri20] Drinfeld, V., ‘Prismatization’, Preprint, 2020, .Google Scholar | arXiv

[EN19] Ertl, V. and Nizioł, W. A., ‘Syntomic cohomology and -adic motivic cohomology’, Algebr. Geom. 6(1) (2019), 100–131. MR 3904801Google Scholar

[FM87] Fontaine, J.-M. and Messing, W., ‘-adic periods and -adic étale cohomology’, Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67 (Amer. Math. Soc., Providence, RI, 1987), 179–207. MR 902593Google Scholar

[Gab92] Gabber, O., ‘-theory of Henselian local rings and Henselian pairs’, Algebraic -Theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126 (Amer. Math. Soc., Providence, RI, 1992), 59–70. MR 1156502Google Scholar

[Gei04] Geisser, T., ‘Motivic cohomology over Dedekind rings’, Math. Z. 248(4) (2004), 773–794. MR 2103541Google Scholar

[GH99] Geisser, T. and Hesselholt, L., ‘Topological cyclic homology of schemes’, Algebraic -theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67 (Amer. Math. Soc., Providence, RI, 1999), 41–87. MR 1743237Google Scholar | DOI

[GH06] Geisser, T. and Hesselholt, L., ‘The de Rham–Witt complex and -adic vanishing cycles’, J. Amer. Math. Soc. 19(1) (2006), 1–36. MR 2169041Google Scholar | DOI

[Gro85] Gros, M., ‘Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique’, Mém. Soc. Math. France (N.S.) (21) (1985), 87. MR 844488Google Scholar

[HJ21] Hochster, M. and Jeffries, J., ‘A Jacobian criterion for nonsingularity in mixed characteristic’, Preprint, 2021, .Google Scholar | arXiv

[HM03] Hesselholt, L. and Madsen, I., ‘On the -theory of local fields’, Ann. of Math. (2) 158(1) (2003), 1–113. MR 1998478Google Scholar | DOI

[HM04] Hesselholt, L. and Madsen, I., ‘On the De Rham–Witt complex in mixed characteristic’, Ann. Sci. École Norm. Sup. (4) 37(1) (2004), 1–43. MR 2050204Google Scholar | DOI

[HN20] Hesselholt, L. and Nikolaus, T., ‘Topological cyclic homology’, Handbook of Homotopy Theory, CRC Press/Chapman Hall Handb. Math. Ser. (CRC Press, Boca Raton, FL, 2020), 619–656. MR 4197995Google Scholar | DOI

[HW22] Hahn, J. and Wilson, D., ‘Redshift and multiplication for truncated Brown–Peterson spectra’, Ann. of Math. (2) 196(3) (2022), 1277–1351. MR 4503327Google Scholar

[Hyo88] Hyodo, O., ‘A note on -adic étale cohomology in the semistable reduction case’, Invent. Math. 91(3) (1988), 543–557. MR 928497Google Scholar

[Ill71] Illusie, L., Complexe cotangent et déformations. I , Lecture Notes in Mathematics, vol. 239 (Springer-Verlag, Berlin-New York, 1971). MR 0491680Google Scholar

[Ill79] Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12(4) (1979), 501–661. MR 565469Google Scholar | DOI

[Iye07] Iyengar, S., ‘André–Quillen homology of commutative algebras’, Interactions between Homotopy Theory and Algebra, Contemp. Math., vol. 436 (Amer. Math. Soc., Providence, RI, 2007), 203–234. MR 2355775Google Scholar | DOI

[Kat87] Kato, K., ‘On -adic vanishing cycles (application of ideas of Fontaine–Messing)’, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10 (North-Holland, Amsterdam, 1987), 207–251. MR 946241Google Scholar | DOI

[KM21] Kelly, S. and Morrow, M., ‘-theory of valuation rings’, Compos. Math. 157(6) (2021), 1121–1142. MR 4264079Google Scholar

[KST21] Kerz, M., Strunk, F. and Tamme, G., ‘Towards Vorst’s conjecture in positive characteristic’, Compos. Math. 157(6) (2021), 1143–1171. MR 4270122Google Scholar | DOI

[Kun76] Kunz, E., ‘On Noetherian rings of characteristic ’, Amer. J. Math. 98(4) (1976), 999–1013. MR 432625Google Scholar | DOI

[Kur87] Kurihara, M., ‘A note on -adic étale cohomology’, Proc. Japan Acad. Ser. A Math. Sci. 63(7) (1987), 275–278. MR 931263Google Scholar | DOI

[LM21] Lüders, M. and Morrow, M., ‘Milnor -theory of -adic rings’, Preprint, 2021, .Google Scholar | arXiv

[Lur18] Lurie, J., Elliptic Cohomology II: Orientations URL: https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf.Google Scholar

[LW22] Liu, R. and Wang, G., ‘Topological cyclic homology of local fields’, Invent. Math. 230(2) (2022), 851–932. MR 4493328Google Scholar | DOI

[Mat22] Mathew, A., ‘Some recent advances in topological Hochschild homology’, Bull. Lond. Math. Soc. 54(1) (2022), 1–44. MR 4396920Google Scholar

[Mil76] Milne, J. S., ‘Duality in the flat cohomology of a surface’, Ann. Sci. École Norm. Sup. (4) 9(2) (1976), 171–201. MR 460331Google Scholar

[Niz06] Nizioł, W., ‘-adic Motivic Cohomology in Arithmetic’, International Congress of Mathematicians. vol. II (Eur. Math. Soc., Zürich, 2006), 459–472. MR 2275605Google Scholar

[Niz12] Nizioł, W., ‘-theory of log-schemes II: Log-syntomic -theory’, Adv. Math. 230(4–6) (2012), 1646–1672. MR 2927351Google Scholar | DOI

[Sai22] Saito, T., ‘Frobenius–Witt differentials and regularity’, Algebra Number Theory 16(2) (2022), 369–391. MR 4412577Google Scholar

[Sat05] Sato, K., ‘Higher-dimensional arithmetic using -adic étale Tate twists’, Homology Homotopy Appl. 7(3) (2005), 173–187. MR 2205174Google Scholar | DOI

[Sat07] Sato, K., ‘-adic étale Tate twists and arithmetic duality’, Ann. Sci. École Norm. Sup. (4) 40(4) (2007), 519–588. With an appendix by Kei Hagihara. MR 2191526Google Scholar

[Sch94] Schneider, P., ‘-adic points of motives’, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55 (Amer. Math. Soc., Providence, RI, 1994), 225–249. MR 1265555Google Scholar

[SS20] Saito, S. and Sato, K., ‘On -adic vanishing cycles of log smooth families’, Tunis. J. Math. 2(2) (2020), 309–335. MR 3990821Google Scholar | DOI

[Sta19] The Stacks Project authors, The Stacks Project, https://stacks.math.columbia.edu, 2019.Google Scholar

[Sus83] Suslin, A., ‘On the -theory of algebraically closed fields’, Invent. Math. 73(2) (1983), 241–245. MR 714090Google Scholar

[Tat76] Tate, J., ‘Relations between and Galois cohomology’, Invent. Math. 36 (1976), 257–274. MR 429837Google Scholar | DOI

[Tsu99] Tsuji, T., ‘-adic étale cohomology and crystalline cohomology in the semi-stable reduction case’, Invent. Math. 137(2) (1999), 233–411. MR 1705837Google Scholar

Cité par Sources :