Chow groups and L-derivatives of automorphic motives for unitary groups, II.
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In this article, we improve our main results from [LL21] in two directions: First, we allow ramified places in the CM extension $E/F$ at which we consider representations that are spherical with respect to a certain special maximal compact subgroup, by formulating and proving an analogue of the Kudla–Rapoport conjecture for exotic smooth Rapoport–Zink spaces. Second, we lift the restriction on the components at split places of the automorphic representation, by proving a more general vanishing result on certain cohomology of integral models of unitary Shimura varieties with Drinfeld level structures.
@article{10_1017_fmp_2022_2,
     author = {Chao Li and Yifeng Liu},
     title = {Chow groups and {L-derivatives} of automorphic motives for unitary groups, {II.}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.2/}
}
TY  - JOUR
AU  - Chao Li
AU  - Yifeng Liu
TI  - Chow groups and L-derivatives of automorphic motives for unitary groups, II.
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.2/
DO  - 10.1017/fmp.2022.2
LA  - en
ID  - 10_1017_fmp_2022_2
ER  - 
%0 Journal Article
%A Chao Li
%A Yifeng Liu
%T Chow groups and L-derivatives of automorphic motives for unitary groups, II.
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.2/
%R 10.1017/fmp.2022.2
%G en
%F 10_1017_fmp_2022_2
Chao Li; Yifeng Liu. Chow groups and L-derivatives of automorphic motives for unitary groups, II.. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.2

[ACZ16] Ahsendorf, T., Cheng, C. and Zink, T., ‘-displays and -divisible formal -modules’, J. Algebra 457 (2016), 129–193, DOI 10.1016/j.jalgebra.2016.03.002. MR 349008010.1016/j.jalgebra.2016.03.002Google Scholar | DOI

[Beĭ87] Beĭlinson, A. A., ‘Height pairing between algebraic cycles’, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., Vol. 67 (Amer. Math. Soc., Providence, RI, 1987), 1–24. MR 90259010.1090/conm/067/902590Google Scholar | DOI

[CS17] Caraiani, A. and Scholze, P., ‘On the generic part of the cohomology of compact unitary Shimura varieties’, Ann. of Math. (2) 186(3) (2017), 649–766, DOI 10.4007/annals.2017.186.3.1. MR 370267710.4007/annals.2017.186.3.1Google Scholar | DOI

[CY20] Cho, S. and Yamauchi, T., ‘A reformulation of the Siegel series and intersection numbers’, Math. Ann. 377(3–4) (2020), 1757–1826, DOI 10.1007/s00208-020-01999-2. MR 412690710.1007/s00208-020-01999-2Google Scholar | DOI

[EL] Eischen, E. and Liu, Z., ‘Archimedean zeta integrals for unitary groups’, Preprint, 2020, .Google Scholar | arXiv

[GI16] Gan, W. T. and Ichino, A., ‘The Gross–Prasad conjecture and local theta correspondence’, Invent. Math. 206(3) (2016), 705–799, DOI 10.1007/s00222-016-0662-8. MR 3573972Google Scholar | DOI

[GPSR87] Gelbart, S., Piatetski-Shapiro, I. and Rallis, S., Explicit Constructions of Automorphic L-Functions, Lecture Notes in Mathematics, Vol. 1254 (Springer, Berlin, 1987). MR 89209710.1007/BFb0078127Google Scholar | DOI

[GS87] Gillet, H. and Soul, C., ‘Intersection theory using Adams operations’, Invent. Math. 90(2) (1987), 243–277, DOI 10.1007/BF01388705. MR 91020110.1007/BF01388705Google Scholar | DOI

[Gro97] Gross, B. H., ‘On the motive of a reductive group’, Invent. Math. 130(2) (1997), 287–313, DOI 10.1007/s002220050186. MR 147415910.1007/s002220050186Google Scholar | DOI

[GZ86] Gross, B. H. and Zagier, D. B., “Heegner points and derivatives of -series”, Invent. Math. 84(2) (1986), 225–320, DOI 10.1007/BF01388809. MR 83319210.1007/BF01388809Google Scholar | DOI

[HT01] Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, Vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich. MR 1876802Google Scholar

[How12] Howard, B., ‘Complex multiplication cycles and Kudla-Rapoport divisors’, Ann. of Math. (2) 176(2) (2012), 1097–1171, DOI 10.4007/annals.2012.176.2.9. MR 295077110.4007/annals.2012.176.2.9Google Scholar | DOI

[How19] Howard, B., ‘Linear invariance of intersections on unitary Rapoport-Zink spaces’, Forum Math. 31(5) (2019), 1265–1281, DOI 10.1515/forum-2019-0023. MR 400058710.1515/forum-2019-0023Google Scholar | DOI

[HP14] Howard, B. and Pappas, G., ‘On the supersingular locus of the GU(2, 2) Shimura variety’, Algebra Number Theory 8(7) (2014), 1659–1699, DOI 10.2140/ant.2014.8.1659. MR 327227810.2140/ant.2014.8.1659Google Scholar | DOI

[Jac62] Jacobowitz, R., ‘Hermitian forms over local fields’, Amer. J. Math. 84 (1962), 441–465, DOI 10.2307/2372982. MR 15012810.2307/2372982Google Scholar | DOI

[Kot92] Kottwitz, R. E., ‘Points on some Shimura varieties over finite fields’, J. Amer. Math. Soc. 5(2) (1992), 373–444. MR 112498210.1090/S0894-0347-1992-1124982-1Google Scholar | DOI

[KR11] Kudla, S. and Rapoport, M., ‘Special cycles on unitary Shimura varieties I. Unramified local theory’, Invent. Math. 184(3) (2011), 629–682, DOI 10.1007/s00222-010-0298-z. MR 280069710.1007/s00222-010-0298-zGoogle Scholar | DOI

[KR14] Kudla, S. and Rapoport, M., ‘Special cycles on unitary Shimura varieties II: Global theory’, J. Reine Angew. Math. 697 (2014), 91–157, DOI 10.1515/crelle-2012-0121. MR 3281653Google Scholar

[Kud97] Kudla, S. S., ‘Central derivatives of Eisenstein series and height pairings’, Ann. of Math. (2) 146(3) (1997), 545–646, DOI 10.2307/2952456. MR 149144810.2307/2952456Google Scholar | DOI

[Kud02] Kudla, S. S., ‘Derivatives of Eisenstein series and generating functions for arithmetic cycles’, Astérisque 276 (2002), 341–368. Séminaire Bourbaki, Vol. 1999/2000. MR 1886765Google Scholar

[Kud03] Kudla, S. S., Modular forms and arithmetic geometry, in Current Developments in Mathematics, 2002 (Int. Press, Somerville, MA, 2003), 135–179. MR 2062318Google Scholar

[KRY06] Kudla, S. S., Rapoport, M. and Yang, T., Modular Forms and Special Cycles on Shimura Curves, Annals of Mathematics Studies, Vol. 161 (Princeton University Press, Princeton, NJ, 2006). MR 222035910.1515/9781400837168Google Scholar | DOI

[Lau08] Lau, E., ‘Displays and formal p-divisible groups’, Invent. Math. 171(3) (2008), 617–628, DOI 10.1007/s00222-007-0090-x. MR 237280810.1007/s00222-007-0090-xGoogle Scholar | DOI

[Lau10] Lau, E., ‘Frames and finite group schemes over complete regular local rings’, Doc. Math. 15 (2010), 545–569, DOI 10.3846/1392-6292.2010.15.547-569. MR 2679066Google Scholar

[LL21] Li, C. and Liu, Y., ‘Chow groups and -derivatives of automorphic motives for unitary groups’, Ann. of Math. (2) 194(3) (2021), 817–901, DOI 10.4007/annals.2021.194.3.6. MR 4334978Google Scholar | DOI

[LZa] Li, C. and Zhang, W., ‘Kudla–Rapoport cycles and derivatives of local densities’, J. Amer. Math. Soc. (2021), DOI 10.1090/jams/988.Google Scholar

[LZb] Li, C. and Zhang, W., ‘On the arithmetic Siegel–Weil formula for GSpin Shimura varieties,’ Preprint, 2021, .Google Scholar | arXiv

[Liu11a] Liu, Y., ‘Arithmetic theta lifting and -derivatives for unitary groups, I’, Algebra Number Theory 5(7) (2011), 849–921, DOI 10.2140/ant.2011.5.849. MR 292856310.2140/ant.2011.5.849Google Scholar | DOI

[Liu11b] Liu, Y., ‘Arithmetic theta lifting and L-derivatives for unitary groups, II’, Algebra Number Theory 5(7) (2011), 923–1000, DOI 10.2140/ant.2011.5.923. MR 292856410.2140/ant.2011.5.923Google Scholar | DOI

[Liu21] Liu, Y., ‘Fourier-Jacobi cycles and arithmetic relative trace formula (with an appendix by Chao Li and Yihang Zhu)’, Camb. J. Math. 9(1) (2021), 1–147, DOI 10.4310/CJM.2021.v9.n1.a1. Appendix by Chao Li and Yihang Zhu. MR 432525910.4310/CJM.2021.v9.n1.a1Google Scholar | DOI

[Liu22] Liu, Y., ‘Theta correspondence for almost unramified representations of unitary groups’, J. Number Theory 230 (2022), 196–224, DOI 10.1016/j.jnt.2021.03.027. MR 4327954Google Scholar | DOI

[LTXZZ] Liu, Y., Tian, Y., Xiao, L., Zhang, W. and Zhu, X., ‘On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives’, Invent. Math. (2022), DOI 10.1007/s00222-021-01088-4.Google Scholar

[Lus76] Lusztig, G., ‘Coxeter orbits and eigenspaces of Frobenius’, Invent. Math. 38(2) (1976), 101–159, DOI 10.1007/BF01408569. MR 45388510.1007/BF01408569Google Scholar | DOI

[Man08] Mantovan, E., ‘A compactification of Igusa varieties’, Math. Ann. 340(2) (2008), 265–292, DOI 10.1007/s00208-007-0149-4. MR 236898010.1007/s00208-007-0149-4Google Scholar | DOI

[Mih22] Mihatsch, A., ‘Relative unitary RZ-spaces and the arithmetic fundamental lemma’, J. Inst. Math. Jussieu 21(1) (2022), 241–301, DOI 10.1017/S1474748020000079. MR 4366338Google Scholar | DOI

[Ral84] Rallis, S., ‘Injectivity properties of liftings associated to Weil representations’, Compositio Math. 52(2) (1984), 139–169. MR 750352Google Scholar

[RSZ17] Rapoport, M., Smithling, B. and Zhang, W., ‘On the arithmetic transfer conjecture for exotic smooth formal moduli spaces’, Duke Math. J. 166(12) (2017), 2183–2336, DOI 10.1215/00127094-2017-0003. MR 3694568Google Scholar | DOI

[RSZ20] Rapoport, M., Smithling, B. and Zhang, W., ‘Arithmetic diagonal cycles on unitary Shimura varieties’, Compos. Math. 156(9) (2020), 1745–1824, DOI 10.1112/s0010437x20007289. MR 416759410.1112/S0010437X20007289Google Scholar | DOI

[RZ96] Rapoport, M. and Zink, Th., Period Spaces for -Divisible Groups, Annals of Mathematics Studies, Vol. 141 (Princeton University Press, Princeton, NJ, 1996). MR 1393439Google Scholar

[TY07] Taylor, R. and Yoshida, T., ‘Compatibility of local and global Langlands correspondences’, J. Amer. Math. Soc. 20(2) (2007), 467–493, DOI 10.1090/S0894-0347-06-00542-X. MR 227677710.1090/S0894-0347-06-00542-XGoogle Scholar | DOI

[Vol07] Vollaard, I., ‘Endomorphisms of quasi-canonical lifts’, Astérisque 312 (2007), 105–112 (English, with English and French summaries). MR 2340375Google Scholar

[Wal90] Waldspurger, J.-L., ‘Démonstration d’une conjecture de dualité de Howe dans le cas -adique, ’, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc., Vol. 2 (Weizmann, Jerusalem, 1990), 267–324 (French). MR 1159105Google Scholar

[Wu] Wu, H., ‘The supersingular locus of unitary Shimura varieties with exotic good reduction’, Preprint, 2016, .Google Scholar | arXiv

[Yam14] Yamana, S., ‘L-functions and theta correspondence for classical groups’, Invent. Math. 196(3) (2014), 651–732, DOI 10.1007/s00222-013-0476-x. MR 321104310.1007/s00222-013-0476-xGoogle Scholar | DOI

[Zel80] Zelevinsky, A. V., ‘Induced representations of reductive -adic groups. II. On irreducible representations of ’, Ann. Sci. École Norm. Sup. (4) 13(2) (1980), 165–210. MR 58408410.24033/asens.1379Google Scholar | DOI

[Zha21] Zhang, W., ‘Weil representation and arithmetic fundamental lemma’, Ann. of Math. (2) 193(3) (2021), 863–978, DOI 10.4007/annals.2021.193.3.5. MR 4250392Google Scholar | DOI

[Zin02] Zink, T., ‘The display of a formal -divisible group’, Astérisque 278 (2002), 127–248. Cohomologies -adiques et applications arithmétiques, I. MR 1922825Google Scholar

Cité par Sources :