On some p-differential graded link homologies
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes.A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a $2p$th root of unity.
@article{10_1017_fmp_2022_19,
     author = {You Qi and Joshua Sussan},
     title = {On some p-differential graded link homologies},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.19/}
}
TY  - JOUR
AU  - You Qi
AU  - Joshua Sussan
TI  - On some p-differential graded link homologies
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.19/
DO  - 10.1017/fmp.2022.19
LA  - en
ID  - 10_1017_fmp_2022_19
ER  - 
%0 Journal Article
%A You Qi
%A Joshua Sussan
%T On some p-differential graded link homologies
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.19/
%R 10.1017/fmp.2022.19
%G en
%F 10_1017_fmp_2022_19
You Qi; Joshua Sussan. On some p-differential graded link homologies. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.19

[Cau17] Cautis, S., ‘Remarks on coloured triply graded link invariants’, Algebr. Geom. Topol. 17(6) (2017), 3811–3836. arXiv:1611.09924.Google Scholar | DOI

[CF94] Crane, L. and Frenkel, I. B., ‘Four dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35(10) (1994), 5136–5154. arXiv:hep-th/9405183.Google Scholar | DOI

[EK10] Elias, B. and Khovanov, M., ‘Diagrammatics for Soergel categories’, Int. J. Math. Math. Sci. 58 (2010), Art. ID 978635. arXiv:0902.4700.Google Scholar

[Kho00] Khovanov, M., ‘A categorification of the Jones polynomial’, Duke Math. J. 101(3) (2000), 359–426. arXiv:math/9908171.Google Scholar | DOI

[Kho07] Khovanov, M., ‘Triply-graded link homology and Hochschild homology of Soergel bimodules’, Internat. J. Math. 18(8) (2007), 869–885. arXiv:math/0510265.Google Scholar | DOI

[Kho16] Khovanov, M., ‘Hopfological algebra and categorification at a root of unity: The first steps’, J. Knot Theory Ramifications, 25(3) (2016), 359–426. arXiv:math/0509083.Google Scholar | DOI

[KQ15] Khovanov, M. and Qi, Y., ‘An approach to categorification of some small quantum groups’, Quantum Topol. 6(2) (2015), 185–311. arXiv:1208.0616.Google Scholar | DOI

[KR08a] Khovanov, M. and Rozansky, L., ‘Matrix factorizations and link homology’, Fund. Math. 199(1) (2008), 1–91. arXiv:math/0401268.Google Scholar | DOI

[KR08b] Khovanov, M. and Rozansky, L., ‘Matrix factorizations and link homology, II’, Geom. Topol. 12(3) (2008), 1387–1425. arXiv:math/0505056.Google Scholar | DOI

[KR16] Khovanov, M. and Rozansky, L., ‘Positive half of the Witt algebra acts on triply graded link homology’, Quantum Topol. 7(4) (2016), 737–795. arXiv:1305.1642.Google Scholar | DOI

[KW98] Kassel, C. and Wambst, M., ‘Algèbre homologique des N-complexes et homologie de Hochschild aux racines de l’unité’, Publ. Res. Inst. Math. Sci. 34(2) (1998), 91–114. arXiv:q-alg/9705001.Google Scholar | DOI

[May42a] Mayer, W., ‘A new homology theory’, Ann. of Math. (2) 43(2) (1942), 370–380.Google Scholar | DOI

[May42b] Mayer, W., ‘A new homology theory. II’, Ann. of Math. (2) 43(3) (1942), 594–605.Google Scholar | DOI

[Qi14] Qi, Y., ‘Hopfological algebra’, Compos. Math. 150(01) (2014), 1–45. arXiv:1205.1814.Google Scholar | DOI

[QRS18] Queffelec, H., Rose, D. and Sartori, A., ‘Annular evaluation and link homology’, Preprint, 2018, arXiv:1802.04131.Google Scholar

[QS16] Qi, Y. and Sussan, J., ‘A categorification of the Burau representation at prime roots of unity’, Selecta Math. (N.S.) 22(3) (2016), 1157–1193. arXiv:1312.7692.Google Scholar | DOI

[QS17] Qi, Y. and Sussan, J., ‘Categorification at prime roots of unity and hopfological finiteness’, in Categorification and Higher Representation Theory, Contemp. Math. vol. 683 (Amer. Math. Soc., Providence, RI, 2017) 261–286. arXiv:1509.00438.Google Scholar | DOI

[Rou04] Rouquier, R., ‘Categorification of the braid group’, Preprint, 2004, arXiv:RT/0409593.Google Scholar

[Rou17] Rouquier, R., ‘Khovanov–Rozansky homology and 2-braid groups’, in Categorification and Higher Representation Theory, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2017) 141–147. arXiv:1203.5065.Google Scholar

[RT90] Reshetikhin, N. Y. and Turaev, V. G., ‘Ribbon graphs and their invariants derived from quantum groups’, Comm. Math. Phys. 127(1) (1990), 1–26.Google Scholar | DOI

[RW20] Robert, L.-H. and Wagner, E., ‘Symmetric Khovanov–Rozansky link homologies’, Journal d’École polytechnique - Mathématiques 7 (2020), 573–651. arXiv:1801.02244.Google Scholar | DOI

[Spa49] Spanier, E. H., ‘The Mayer homology theory’, Bull. Amer. Math. Soc. 55(2) (1949), 102–112.Google Scholar | DOI

[Web17] Webster, B., ‘Knot invariants and higher representation theory’, Mem. Amer. Math. Soc. 250(1191) (2017), 133. arXiv:1309.3796.Google Scholar

[Wit89] Witten, E., ‘Quantum field theory and the Jones polynomial’, Commun. Math. Phys. 121(3) (1989), 351–399.Google Scholar | DOI

Cité par Sources :