Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_19,
     author = {You Qi and Joshua Sussan},
     title = {On some p-differential graded link homologies},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.19/}
}
                      
                      
                    You Qi; Joshua Sussan. On some p-differential graded link homologies. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.19
[Cau17] , ‘Remarks on coloured triply graded link invariants’, Algebr. Geom. Topol. 17(6) (2017), 3811–3836. arXiv:1611.09924.Google Scholar | DOI
[CF94] and , ‘Four dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35(10) (1994), 5136–5154. arXiv:hep-th/9405183.Google Scholar | DOI
[EK10] and , ‘Diagrammatics for Soergel categories’, Int. J. Math. Math. Sci. 58 (2010), Art. ID 978635. arXiv:0902.4700.Google Scholar
[Kho00] , ‘A categorification of the Jones polynomial’, Duke Math. J. 101(3) (2000), 359–426. arXiv:math/9908171.Google Scholar | DOI
[Kho07] , ‘Triply-graded link homology and Hochschild homology of Soergel bimodules’, Internat. J. Math. 18(8) (2007), 869–885. arXiv:math/0510265.Google Scholar | DOI
[Kho16] , ‘Hopfological algebra and categorification at a root of unity: The first steps’, J. Knot Theory Ramifications, 25(3) (2016), 359–426. arXiv:math/0509083.Google Scholar | DOI
[KQ15] and , ‘An approach to categorification of some small quantum groups’, Quantum Topol. 6(2) (2015), 185–311. arXiv:1208.0616.Google Scholar | DOI
[KR08a] and , ‘Matrix factorizations and link homology’, Fund. Math. 199(1) (2008), 1–91. arXiv:math/0401268.Google Scholar | DOI
[KR08b] and , ‘Matrix factorizations and link homology, II’, Geom. Topol. 12(3) (2008), 1387–1425. arXiv:math/0505056.Google Scholar | DOI
[KR16] and , ‘Positive half of the Witt algebra acts on triply graded link homology’, Quantum Topol. 7(4) (2016), 737–795. arXiv:1305.1642.Google Scholar | DOI
[KW98] and , ‘Algèbre homologique des N-complexes et homologie de Hochschild aux racines de l’unité’, Publ. Res. Inst. Math. Sci. 34(2) (1998), 91–114. arXiv:q-alg/9705001.Google Scholar | DOI
[May42a] , ‘A new homology theory’, Ann. of Math. (2) 43(2) (1942), 370–380.Google Scholar | DOI
[May42b] , ‘A new homology theory. II’, Ann. of Math. (2) 43(3) (1942), 594–605.Google Scholar | DOI
[Qi14] , ‘Hopfological algebra’, Compos. Math. 150(01) (2014), 1–45. arXiv:1205.1814.Google Scholar | DOI
[QRS18] , and , ‘Annular evaluation and link homology’, Preprint, 2018, arXiv:1802.04131.Google Scholar
[QS16] and , ‘A categorification of the Burau representation at prime roots of unity’, Selecta Math. (N.S.) 22(3) (2016), 1157–1193. arXiv:1312.7692.Google Scholar | DOI
[QS17] and , ‘Categorification at prime roots of unity and hopfological finiteness’, in Categorification and Higher Representation Theory, Contemp. Math. vol. 683 (Amer. Math. Soc., Providence, RI, 2017) 261–286. arXiv:1509.00438.Google Scholar | DOI
[Rou04] , ‘Categorification of the braid group’, Preprint, 2004, arXiv:RT/0409593.Google Scholar
[Rou17] , ‘Khovanov–Rozansky homology and 2-braid groups’, in Categorification and Higher Representation Theory, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2017) 141–147. arXiv:1203.5065.Google Scholar
[RT90] and , ‘Ribbon graphs and their invariants derived from quantum groups’, Comm. Math. Phys. 127(1) (1990), 1–26.Google Scholar | DOI
[RW20] and , ‘Symmetric Khovanov–Rozansky link homologies’, Journal d’École polytechnique - Mathématiques 7 (2020), 573–651. arXiv:1801.02244.Google Scholar | DOI
[Spa49] , ‘The Mayer homology theory’, Bull. Amer. Math. Soc. 55(2) (1949), 102–112.Google Scholar | DOI
[Web17] , ‘Knot invariants and higher representation theory’, Mem. Amer. Math. Soc. 250(1191) (2017), 133. arXiv:1309.3796.Google Scholar
[Wit89] , ‘Quantum field theory and the Jones polynomial’, Commun. Math. Phys. 121(3) (1989), 351–399.Google Scholar | DOI
Cité par Sources :
