Quantitative Heegaard Floer cohomology and the Calabi invariant
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere.Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
@article{10_1017_fmp_2022_18,
     author = {Daniel Cristofaro-Gardiner and Vincent Humili\`ere and Cheuk Yu Mak and Sobhan Seyfaddini and Ivan Smith},
     title = {Quantitative {Heegaard} {Floer} cohomology and the {Calabi} invariant},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/}
}
TY  - JOUR
AU  - Daniel Cristofaro-Gardiner
AU  - Vincent Humilière
AU  - Cheuk Yu Mak
AU  - Sobhan Seyfaddini
AU  - Ivan Smith
TI  - Quantitative Heegaard Floer cohomology and the Calabi invariant
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/
DO  - 10.1017/fmp.2022.18
LA  - en
ID  - 10_1017_fmp_2022_18
ER  - 
%0 Journal Article
%A Daniel Cristofaro-Gardiner
%A Vincent Humilière
%A Cheuk Yu Mak
%A Sobhan Seyfaddini
%A Ivan Smith
%T Quantitative Heegaard Floer cohomology and the Calabi invariant
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/
%R 10.1017/fmp.2022.18
%G en
%F 10_1017_fmp_2022_18
Daniel Cristofaro-Gardiner; Vincent Humilière; Cheuk Yu Mak; Sobhan Seyfaddini; Ivan Smith. Quantitative Heegaard Floer cohomology and the Calabi invariant. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.18

[1] Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J., ‘Geometry of Algebraic Curves’ vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267 (Springer-Verlag, New York, 1985).Google Scholar | DOI

[2] Asaoka, M. and Irie, K., ‘A closing lemma for Hamiltonian diffeomorphisms of closed surfaces’, Geom. Funct. Anal. 26(5) (2016), 1245–1254.Google Scholar | DOI

[3] Banyaga, A., ‘Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique’, Comment. Math. Helv. 53(2) (1978), 174–227.Google Scholar | DOI

[4] Bertram, A. and Thaddeus, M., ‘On the quantum cohomology of a symmetric product of an algebraic curve’, Duke Math. J. 108(2) (2001), 329–362.Google Scholar | DOI

[5] Biran, P. and Cornea, O., ‘A Lagrangian quantum homology’, in New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lecture Notes, vol. 49 (Amer. Math. Soc., Providence, RI, 2009) 1–44.Google Scholar

[6] Biran, P. and Cornea, O., ‘Lagrangian topology and enumerative geometry’, Geom. Topol. 16(2) (2012), 963–1052.Google Scholar | DOI

[7] Biran, P. and Cornea, O., ‘Quantum structures for Lagrangian submanifolds’, Preprint, 2018, .Google Scholar | arXiv

[8] Bökstedt, M. and Romão, N. M., ‘On the curvature of vortex moduli spaces’, Math. Z. 277(1–2) (2014), 549–573.Google Scholar | DOI

[9] Bowden, J., Hensel, S. and Webb, R., ‘Quasi-morphisms on surface diffeomorphism groups,’ Preprint, 2020, . To appear in JAMS.Google Scholar | arXiv

[10] Burago, D., Ivanov, S. and Polterovich, L., ‘Conjugation-invariant norms on groups of geometric origin’, Adv. Stud. Pure. Math. 52 (2008), 221–250.Google Scholar | DOI

[11] Calabi, E., ‘On the group of automorphisms of a symplectic manifold’, in Problems in Analysis (Lectures at the Sympos. in Honor of Salomon Bochner. (Princeton Univ., Princeton, NJ, 1970), 1–26.Google Scholar | DOI

[12] Calegari, D., ‘What is stable commutator length?Notices of the AMS (2008), 1100–1101.Google Scholar

[13] Calegari, D., scl, MSJ Memoirs, vol. 20 (Mathematical Society of Japan, Tokyo, 2009).Google Scholar | DOI

[14] Charest, F. and Woodward, C., ‘Floer cohomology and flips’, Preprint, 2015, . To appear Mem. Amer. Math. Soc.Google Scholar | arXiv

[15] Cho, C.-H., ‘Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus’, Int. Math. Res. Not. (35) (2004), 1803–1843.Google Scholar | DOI

[16] Cho, C.-H. and Oh, Y.-G., ‘Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds’, Asian J. Math. 10(4) (2006), 773–814.Google Scholar | DOI

[17] Cristofaro-Gardiner, D., Humilière, V., Mak, C. Y., Seyfaddini, S. and Smith, I., ‘Subleading asymptotics of link spectral invariants and homeomorphism groups of surfaces’, Preprint, 2022, .Google Scholar | arXiv

[18] Cristofaro-Gardiner, D., Humilière, V. and Seyfaddini, S., ‘Proof of the simplicity conjecture’, Preprint, 2020, .Google Scholar | arXiv

[19] Cristofaro-Gardiner, D., Humilière, V. and Seyfaddini, S., ‘PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric’, Preprint, 2021, . To appear JEMS.Google Scholar | arXiv

[20] Cristofaro-Gardiner, D., Hutchings, M. and Pomerleano, D., ‘Torsion contact forms in three dimensions have two or infinitely many Reeb orbits’, Geom. Topol. 23(7) (2019), 3601–3645.Google Scholar | DOI

[21] Cristofaro-Gardiner, D., Hutchings, M. and Ramos, V. G. B., ‘The asymptotics of ECH capacities’, Invent. Math. 199(1) (2015), 187–214.Google Scholar | DOI

[22] Cristofaro-Gardiner, D., Prasad, R. and Zhang, B., ‘Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms’, Preprint, 2021, .Google Scholar | arXiv

[23] Edtmair, O. and Hutchings, M., ‘PFH spectral invariants and closing lemmas’, Preprint, 2021, .Google Scholar | arXiv

[24] Eisenbud, D., Hirsch, U. and Neumann, W., ‘Transverse foliations of Seifert bundles and self homeomorphism of the circle’, Comment. Math. Helv. 56 (1981), 638–660.Google Scholar

[25] Entov, M. and Polterovich, L., ‘Calabi quasimorphism and quantum homology’, Int. Math. Res. Not. (30) (2003), 1635–1676.Google Scholar | DOI

[26] Entov, M., Polterovich, L. and Py, P., ‘On continuity of quasimorphisms for symplectic maps’, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., vol. 296 (Birkhäuser/Springer, New York, 2012), 169–197. With an appendix by Michael Khanevsky.Google Scholar | DOI

[27] Epstein, D. B. A., ‘The simplicity of certain groups of homeomorphisms’, Compositio Math. 22 (1970), 165–173.Google Scholar

[28] Fathi, A., ‘Structure of the group of homeomorphisms preserving a good measure on a compact manifold’, Ann. Sci. École Norm. Sup. (4) 13(1) (1980), 45–93.Google Scholar | DOI

[29] Fathi, A., ‘Sur l’homomorphisme de Calabi ’, in Transformations et homéomorphismes préservant la mesure. Systèmes dynamiques minimaux., Thèse Orsay, 1980.Google Scholar

[30] Floer, A., ‘Morse theory for Lagrangian intersections’, J. Differential Geom. 28(3) (1988), 513–547.Google Scholar | DOI

[31] Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., ‘Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory’, Mem. Amer. Math. Soc. 260(1254) (2019), x+266.Google Scholar

[32] Gambaudo, J.-M. and Ghys, E., ‘Enlacements asymptotiques’, Topology 36(6) (1997), 1355–1379.Google Scholar | DOI

[33] Ghys, E., ‘Knots and dynamics’, in International Congress of Mathematicians, vol. I, (Eur. Math. Soc., Zürich, 2007) 247– 277.Google Scholar

[34] Griffiths, P. and Harris, J., Principles of Algebraic Geometry, (Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994). Reprint of the 1978 original.Google Scholar | DOI

[35] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, No. 52 (Springer-Verlag, New York-Heidelberg, 1977).Google Scholar | DOI

[36] Higman, G., ‘On infinite simple permutation groups’, Publ. Math. Debrecen 3 (1955), 221–226.Google Scholar | DOI

[37] Hofer, H., ‘On the topological properties of symplectic maps’, Proc. Roy. Soc. Edinburgh Sect. A 115(1-2) (1990), 25–38.Google Scholar | DOI

[38] Huybrechts, D., Complex Geometry. An Introduction, Universitext (Springer-Verlag, Berlin, 2005).Google Scholar

[39] Kawamoto, Y., ‘Homogeneous quasimorphisms, -topology and Lagrangian intersection’, Preprint, 2020, .Google Scholar | arXiv

[40] Kouvidakis, A., ‘Divisors on symmetric products of curves’, Trans. Amer. Math. Soc. 337(1) (1993), 117–128.Google Scholar | DOI

[41] Lalonde, F. and Mcduff, D., ‘The geometry of symplectic energy’, Ann. of Math. (2) 141(2) (1995), 349–371.Google Scholar | DOI

[42] Lazzarini, L., ‘Existence of a somewhere injective pseudo-holomorphic disc’, Geom. Funct. Anal. 10(4) (2000), 829–862.Google Scholar | DOI

[43] Le Calvez, P., ‘Une version feuilletée équivariante du théorème de translation de Brouwer’, Publ. Math. Inst. Hautes Études Sci. (102) (2005), 1–98.Google Scholar | DOI

[44] Le Calvez, P., ‘Periodic orbits of Hamiltonian homeomorphisms of surfaces’, Duke Math. J. 133(1) (2006), 125–184.Google Scholar

[45] Le Roux, F., Seyfaddini, S. and Viterbo, C., ‘Barcodes and area-preserving homeomorphisms’, Preprint, 2018, .Google Scholar | arXiv

[46] Leclercq, R. and Zapolsky, F., ‘Spectral invariants for monotone Lagrangians’, J. Topol. Anal. 10(3) (2018), 627–700.Google Scholar | DOI

[47] Lipshitz, R., ‘A cylindrical reformulation of Heegaard Floer homology’, Geom. Topol. 10 (2006), 955–1096. [Paging previously given as 955–1097].Google Scholar | DOI

[48] Mak, C. Y. and Smith, I.. Non-displaceable Lagrangian links in four-manifolds. Geom. Funct. Anal. 2021.Google Scholar | DOI

[49] Matsumoto, S., ‘Arnold conjecture for surface homeomorphisms. Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications” (La Bussière, 1997)’, Topol Appl. 104(1-3) (2000), 191–214.Google Scholar | DOI

[50] Mcduff, D. and Salamon, D., -holomorphic Curves and Symplectic Topology, second edn., American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2012).Google Scholar

[51] Mcduff, D. and Salamon, D., ‘Introduction to Symplectic Topology’, third edn., Oxford Graduate Texts in Mathematics (Oxford University Press, Oxford, 2017).Google Scholar | DOI

[52] Oh, Y.-G., ‘Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants’, Comm. Anal. Geom. 7(1) (1999), 1–54.Google Scholar | DOI

[53] Oh, Y.-G., ‘Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds’, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232 (Birkhauser, Boston, 2005), 525–570.Google Scholar

[54] Oh, Y.-G., ‘The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows’, in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., vol. 512 (Amer. Math. Soc., Providence, RI, 2010) 149–177.Google Scholar | DOI

[55] Oh, Y.-G., Symplectic Topology and Floer Homology, vol. 1, New Mathematical Monographs, vol. 28 (Cambridge University Press, Cambridge, 2015).Google Scholar

[56] Oh, Y.-G., Symplectic Topology and Floer Homology , vol. 2, New Mathematical Monographs, vol. 29 (Cambridge University Press, Cambridge, 2015).Google Scholar

[57] Oh, Y.-G. and Müller, S., ‘The group of Hamiltonian homeomorphisms and –symplectic topology’, J. Symplectic Geom. 5(2) (2007), 167–219.Google Scholar

[58] Ozsváth, P. and Szabó, Z., ‘Holomorphic disks and topological invariants for closed three-manifolds’, Ann. of Math. (2) 159(3) (2004), 1027–1158.Google Scholar | DOI

[59] Ozsváth, P. and Szabó, Z., ‘Holomorphic disks, link invariants and the multi-variable Alexander polynomial’, Algebr. Geom. Topol. 8(2) (2008), 615–692.Google Scholar

[60] Pacienza, G., ‘On the nef cone of symmetric products of a generic curve’, Amer. J. Math. 125(5) (2003), 1117–1135.Google Scholar | DOI

[61] Perutz, T., ‘Hamiltonian handleslides for Heegaard Floer homology’, in Proceedings of Gökova Geometry-Topology Conference 2007 (Gökova Geometry/Topology Conference (GGT), Gökova, 2008) 15–35.Google Scholar

[62] Polterovich, L., The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 2001).Google Scholar | DOI

[63] Polterovich, L. and Rosen, D., ‘Function Theory on Symplectic Manifolds’, CRM Monograph Series, vol. 34 (American Mathematical Society, Providence, RI, 2014).Google Scholar

[64] Polterovich, L. and Shelukhin, E., ‘Lagrangian configurations and Hamiltonian maps’, Preprint, 2021, .Google Scholar | arXiv

[65] Robbin, J. and Salamon, D., ‘The Maslov index for paths’, Topology 32(4) (1993), 827–844.Google Scholar | DOI

[66] Schwarz, M., ‘On the action spectrum for closed symplectically aspherical manifolds’, Pacific J. Math. 193(2) (2000), 419–461.Google Scholar | DOI

[67] Seidel, P., ‘A biased view of symplectic cohomology’, in Current Developments in Mathematics , 2006 (Int. Press, Somerville, MA, 2008) 211– 253.Google Scholar

[68] Seidel, P., ‘Fukaya Categories and Picard–Lefschetz Theory’, Zurich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2008).Google Scholar | DOI

[69] Seidel, P., ‘Abstract analogues of flux as symplectic invariants’, Mém. Soc. Math. Fr. (N.S.) 137 (2014), 135.Google Scholar

[70] Seyfaddini, S., ‘-limits of Hamiltonian paths and the Oh–Schwarz spectral invariants’, Int. Math. Res. Not. IMRN (2013), 4920–4960.Google Scholar | DOI

[71] Seyfaddini, S., ‘The displaced disks problem via symplectic topology’, C. R. Math. Acad. Sci. Paris 351(21–22) (2013), 841–843.Google Scholar | DOI

[72] Tsuboi, T., ‘Homeomorphism groups of commutator width one’, Proc. Am. Math. Soc. 141(5) (2013), 1839–1847.Google Scholar | DOI

[73] Usher, M., ‘Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms’, Geom. Topol. 15(3) (2011), 1313–1417.Google Scholar | DOI

[74] Viterbo, C., ‘Symplectic topology as the geometry of generating functions’, Math. Annalen 292 (1992), 685–710.Google Scholar | DOI

[75] Zapolsky, F., ‘The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory, Preprint, 2015, .Google Scholar | arXiv

Cité par Sources :