Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_18,
     author = {Daniel Cristofaro-Gardiner and Vincent Humili\`ere and Cheuk Yu Mak and Sobhan Seyfaddini and Ivan Smith},
     title = {Quantitative {Heegaard} {Floer} cohomology and the {Calabi} invariant},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/}
}
                      
                      
                    TY - JOUR AU - Daniel Cristofaro-Gardiner AU - Vincent Humilière AU - Cheuk Yu Mak AU - Sobhan Seyfaddini AU - Ivan Smith TI - Quantitative Heegaard Floer cohomology and the Calabi invariant JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/ DO - 10.1017/fmp.2022.18 LA - en ID - 10_1017_fmp_2022_18 ER -
%0 Journal Article %A Daniel Cristofaro-Gardiner %A Vincent Humilière %A Cheuk Yu Mak %A Sobhan Seyfaddini %A Ivan Smith %T Quantitative Heegaard Floer cohomology and the Calabi invariant %J Forum of Mathematics, Pi %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.18/ %R 10.1017/fmp.2022.18 %G en %F 10_1017_fmp_2022_18
Daniel Cristofaro-Gardiner; Vincent Humilière; Cheuk Yu Mak; Sobhan Seyfaddini; Ivan Smith. Quantitative Heegaard Floer cohomology and the Calabi invariant. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.18
[1] , , and , ‘Geometry of Algebraic Curves’ vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267 (Springer-Verlag, New York, 1985).Google Scholar | DOI
[2] and , ‘A closing lemma for Hamiltonian diffeomorphisms of closed surfaces’, Geom. Funct. Anal. 26(5) (2016), 1245–1254.Google Scholar | DOI
[3] , ‘Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique’, Comment. Math. Helv. 53(2) (1978), 174–227.Google Scholar | DOI
[4] and , ‘On the quantum cohomology of a symmetric product of an algebraic curve’, Duke Math. J. 108(2) (2001), 329–362.Google Scholar | DOI
[5] and , ‘A Lagrangian quantum homology’, in New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lecture Notes, vol. 49 (Amer. Math. Soc., Providence, RI, 2009) 1–44.Google Scholar
[6] and , ‘Lagrangian topology and enumerative geometry’, Geom. Topol. 16(2) (2012), 963–1052.Google Scholar | DOI
[7] and , ‘Quantum structures for Lagrangian submanifolds’, Preprint, 2018, .Google Scholar | arXiv
[8] and , ‘On the curvature of vortex moduli spaces’, Math. Z. 277(1–2) (2014), 549–573.Google Scholar | DOI
[9] , and , ‘Quasi-morphisms on surface diffeomorphism groups,’ Preprint, 2020, . To appear in JAMS.Google Scholar | arXiv
[10] , and , ‘Conjugation-invariant norms on groups of geometric origin’, Adv. Stud. Pure. Math. 52 (2008), 221–250.Google Scholar | DOI
[11] , ‘On the group of automorphisms of a symplectic manifold’, in Problems in Analysis (Lectures at the Sympos. in Honor of Salomon Bochner. (Princeton Univ., Princeton, NJ, 1970), 1–26.Google Scholar | DOI
[12] , ‘What is stable commutator length?’ Notices of the AMS (2008), 1100–1101.Google Scholar
[13] , scl, MSJ Memoirs, vol. 20 (Mathematical Society of Japan, Tokyo, 2009).Google Scholar | DOI
[14] and , ‘Floer cohomology and flips’, Preprint, 2015, . To appear Mem. Amer. Math. Soc.Google Scholar | arXiv
[15] , ‘Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus’, Int. Math. Res. Not. (35) (2004), 1803–1843.Google Scholar | DOI
[16] and , ‘Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds’, Asian J. Math. 10(4) (2006), 773–814.Google Scholar | DOI
[17] , , , and , ‘Subleading asymptotics of link spectral invariants and homeomorphism groups of surfaces’, Preprint, 2022, .Google Scholar | arXiv
[18] , and , ‘Proof of the simplicity conjecture’, Preprint, 2020, .Google Scholar | arXiv
[19] , and , ‘PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric’, Preprint, 2021, . To appear JEMS.Google Scholar | arXiv
[20] , and , ‘Torsion contact forms in three dimensions have two or infinitely many Reeb orbits’, Geom. Topol. 23(7) (2019), 3601–3645.Google Scholar | DOI
[21] , and , ‘The asymptotics of ECH capacities’, Invent. Math. 199(1) (2015), 187–214.Google Scholar | DOI
[22] , and , ‘Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms’, Preprint, 2021, .Google Scholar | arXiv
[23] and , ‘PFH spectral invariants and closing lemmas’, Preprint, 2021, .Google Scholar | arXiv
[24] , and , ‘Transverse foliations of Seifert bundles and self homeomorphism of the circle’, Comment. Math. Helv. 56 (1981), 638–660.Google Scholar
[25] and , ‘Calabi quasimorphism and quantum homology’, Int. Math. Res. Not. (30) (2003), 1635–1676.Google Scholar | DOI
[26] , and , ‘On continuity of quasimorphisms for symplectic maps’, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., vol. 296 (Birkhäuser/Springer, New York, 2012), 169–197. With an appendix by Michael Khanevsky.Google Scholar | DOI
[27] , ‘The simplicity of certain groups of homeomorphisms’, Compositio Math. 22 (1970), 165–173.Google Scholar
[28] , ‘Structure of the group of homeomorphisms preserving a good measure on a compact manifold’, Ann. Sci. École Norm. Sup. (4) 13(1) (1980), 45–93.Google Scholar | DOI
[29] , ‘Sur l’homomorphisme de Calabi ’, in Transformations et homéomorphismes préservant la mesure. Systèmes dynamiques minimaux., Thèse Orsay, 1980.Google Scholar
[30] , ‘Morse theory for Lagrangian intersections’, J. Differential Geom. 28(3) (1988), 513–547.Google Scholar | DOI
[31] , , and , ‘Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory’, Mem. Amer. Math. Soc. 260(1254) (2019), x+266.Google Scholar
[32] and , ‘Enlacements asymptotiques’, Topology 36(6) (1997), 1355–1379.Google Scholar | DOI
[33] , ‘Knots and dynamics’, in International Congress of Mathematicians, vol. I, (Eur. Math. Soc., Zürich, 2007) 247– 277.Google Scholar
[34] and , Principles of Algebraic Geometry, (Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994). Reprint of the 1978 original.Google Scholar | DOI
[35] , Algebraic Geometry, Graduate Texts in Mathematics, No. 52 (Springer-Verlag, New York-Heidelberg, 1977).Google Scholar | DOI
[36] , ‘On infinite simple permutation groups’, Publ. Math. Debrecen 3 (1955), 221–226.Google Scholar | DOI
[37] , ‘On the topological properties of symplectic maps’, Proc. Roy. Soc. Edinburgh Sect. A 115(1-2) (1990), 25–38.Google Scholar | DOI
[38] , Complex Geometry. An Introduction, Universitext (Springer-Verlag, Berlin, 2005).Google Scholar
[39] , ‘Homogeneous quasimorphisms, -topology and Lagrangian intersection’, Preprint, 2020, .Google Scholar | arXiv
[40] , ‘Divisors on symmetric products of curves’, Trans. Amer. Math. Soc. 337(1) (1993), 117–128.Google Scholar | DOI
[41] and , ‘The geometry of symplectic energy’, Ann. of Math. (2) 141(2) (1995), 349–371.Google Scholar | DOI
[42] , ‘Existence of a somewhere injective pseudo-holomorphic disc’, Geom. Funct. Anal. 10(4) (2000), 829–862.Google Scholar | DOI
[43] , ‘Une version feuilletée équivariante du théorème de translation de Brouwer’, Publ. Math. Inst. Hautes Études Sci. (102) (2005), 1–98.Google Scholar | DOI
[44] , ‘Periodic orbits of Hamiltonian homeomorphisms of surfaces’, Duke Math. J. 133(1) (2006), 125–184.Google Scholar
[45] , and , ‘Barcodes and area-preserving homeomorphisms’, Preprint, 2018, .Google Scholar | arXiv
[46] and , ‘Spectral invariants for monotone Lagrangians’, J. Topol. Anal. 10(3) (2018), 627–700.Google Scholar | DOI
[47] , ‘A cylindrical reformulation of Heegaard Floer homology’, Geom. Topol. 10 (2006), 955–1096. [Paging previously given as 955–1097].Google Scholar | DOI
[48] and . Non-displaceable Lagrangian links in four-manifolds. Geom. Funct. Anal. 2021.Google Scholar | DOI
[49] , ‘Arnold conjecture for surface homeomorphisms. Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications” (La Bussière, 1997)’, Topol Appl. 104(1-3) (2000), 191–214.Google Scholar | DOI
[50] and , -holomorphic Curves and Symplectic Topology, second edn., American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2012).Google Scholar
[51] and , ‘Introduction to Symplectic Topology’, third edn., Oxford Graduate Texts in Mathematics (Oxford University Press, Oxford, 2017).Google Scholar | DOI
[52] , ‘Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants’, Comm. Anal. Geom. 7(1) (1999), 1–54.Google Scholar | DOI
[53] , ‘Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds’, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232 (Birkhauser, Boston, 2005), 525–570.Google Scholar
[54] , ‘The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows’, in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., vol. 512 (Amer. Math. Soc., Providence, RI, 2010) 149–177.Google Scholar | DOI
[55] , Symplectic Topology and Floer Homology, vol. 1, New Mathematical Monographs, vol. 28 (Cambridge University Press, Cambridge, 2015).Google Scholar
[56] , Symplectic Topology and Floer Homology , vol. 2, New Mathematical Monographs, vol. 29 (Cambridge University Press, Cambridge, 2015).Google Scholar
[57] and , ‘The group of Hamiltonian homeomorphisms and –symplectic topology’, J. Symplectic Geom. 5(2) (2007), 167–219.Google Scholar
[58] and , ‘Holomorphic disks and topological invariants for closed three-manifolds’, Ann. of Math. (2) 159(3) (2004), 1027–1158.Google Scholar | DOI
[59] and , ‘Holomorphic disks, link invariants and the multi-variable Alexander polynomial’, Algebr. Geom. Topol. 8(2) (2008), 615–692.Google Scholar
[60] , ‘On the nef cone of symmetric products of a generic curve’, Amer. J. Math. 125(5) (2003), 1117–1135.Google Scholar | DOI
[61] , ‘Hamiltonian handleslides for Heegaard Floer homology’, in Proceedings of Gökova Geometry-Topology Conference 2007 (Gökova Geometry/Topology Conference (GGT), Gökova, 2008) 15–35.Google Scholar
[62] , The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 2001).Google Scholar | DOI
[63] and , ‘Function Theory on Symplectic Manifolds’, CRM Monograph Series, vol. 34 (American Mathematical Society, Providence, RI, 2014).Google Scholar
[64] and , ‘Lagrangian configurations and Hamiltonian maps’, Preprint, 2021, .Google Scholar | arXiv
[65] and , ‘The Maslov index for paths’, Topology 32(4) (1993), 827–844.Google Scholar | DOI
[66] , ‘On the action spectrum for closed symplectically aspherical manifolds’, Pacific J. Math. 193(2) (2000), 419–461.Google Scholar | DOI
[67] , ‘A biased view of symplectic cohomology’, in Current Developments in Mathematics , 2006 (Int. Press, Somerville, MA, 2008) 211– 253.Google Scholar
[68] , ‘Fukaya Categories and Picard–Lefschetz Theory’, Zurich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2008).Google Scholar | DOI
[69] , ‘Abstract analogues of flux as symplectic invariants’, Mém. Soc. Math. Fr. (N.S.) 137 (2014), 135.Google Scholar
[70] , ‘-limits of Hamiltonian paths and the Oh–Schwarz spectral invariants’, Int. Math. Res. Not. IMRN (2013), 4920–4960.Google Scholar | DOI
[71] , ‘The displaced disks problem via symplectic topology’, C. R. Math. Acad. Sci. Paris 351(21–22) (2013), 841–843.Google Scholar | DOI
[72] , ‘Homeomorphism groups of commutator width one’, Proc. Am. Math. Soc. 141(5) (2013), 1839–1847.Google Scholar | DOI
[73] , ‘Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms’, Geom. Topol. 15(3) (2011), 1313–1417.Google Scholar | DOI
[74] , ‘Symplectic topology as the geometry of generating functions’, Math. Annalen 292 (1992), 685–710.Google Scholar | DOI
[75] , ‘The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory, Preprint, 2015, .Google Scholar | arXiv
Cité par Sources :
