Local newforms for the general linear groups over a non-archimedean local field
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In [14], Jacquet–Piatetskii-Shapiro–Shalika defined a family of compact open subgroups of p-adic general linear groups indexed by nonnegative integers and established the theory of local newforms for irreducible generic representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new family of compact open subgroups indexed by certain tuples of nonnegative integers. For the proof, we introduce the Rankin–Selberg integrals for Speh representations.
@article{10_1017_fmp_2022_17,
     author = {Hiraku Atobe and Satoshi Kondo and Seidai Yasuda},
     title = {Local newforms for the general linear groups over a non-archimedean local field},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/}
}
TY  - JOUR
AU  - Hiraku Atobe
AU  - Satoshi Kondo
AU  - Seidai Yasuda
TI  - Local newforms for the general linear groups over a non-archimedean local field
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/
DO  - 10.1017/fmp.2022.17
LA  - en
ID  - 10_1017_fmp_2022_17
ER  - 
%0 Journal Article
%A Hiraku Atobe
%A Satoshi Kondo
%A Seidai Yasuda
%T Local newforms for the general linear groups over a non-archimedean local field
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/
%R 10.1017/fmp.2022.17
%G en
%F 10_1017_fmp_2022_17
Hiraku Atobe; Satoshi Kondo; Seidai Yasuda. Local newforms for the general linear groups over a non-archimedean local field. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.17

[1] Anderson, F. W. and Fuller, K. R., ‘Rings and Categories of Modules’, second edn, Graduate Texts in Mathematics, vol. 13 (Springer-Verlag, New York, 1992), x+376. Google Scholar

[2] Artin, M., Grothendieck, A. and Verdier, J.-L., ‘Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos’, Lecture Notes in Mathematics, vol. 269 (Springer-Verlag, Berlin-New York, 1972), xix+525.Google Scholar

[3] Atkin, A. O. L. and Lehner, J., ‘Hecke operators on ’, Math. Ann. 185 (1970), 134–160.Google Scholar | DOI

[4] Bernstein, I. N. and Zelevinsky, A. V., ‘Induced representations of reductive -adic groups’, Ann. Sci. École Norm. Sup. (4) 10(4) (1977), 441–472.Google Scholar | DOI

[5] Cai, Y., Friedberg, S., Ginzburg, D. and Kaplan, E., ‘Doubling constructions and tensor product -functions: the linear case’, Invent. Math. 217(3) (2019), 985–1068.Google Scholar | DOI

[6] Casselman, W., ‘On some results of Atkin and Lehner’, Math. Ann. 201 (1973), 301–314.Google Scholar | DOI

[7] Gabriel, P., ‘Unzerlegbare Darstellungen I’, Manuscripta Math. 6 (1972), 71–103.Google Scholar | DOI

[8] Godement, R. and Jacquet, H., ‘Zeta Functions of Simple Algebras’, Lecture Notes in Mathematics, vol. 260 (Springer-Verlag, Berlin-New York, 1972), ix+188.Google Scholar

[9] Gross, B. H., ‘On the Langlands correspondence for symplectic motives. Izv. Ross ’, Akad. Nauk Ser. Mat. 80(4) (2016), 49–64; translation in Izv. Math. (4) (2016), 678–692.Google Scholar

[10] Harish-Chandra, , ‘Harmonic analysis on reductive -adic groups’, Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., vol. XXVI, Williams Coll., Williamstown, Mass., 1972) (Amer. Math. Soc., Providence, R.I.,, 1973) 167–192.Google Scholar

[11] Harris, M. and Taylor, R., ‘The Geometry and Cohomology of Some Simple Shimura Varieties’, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001), viii+276. With an appendix by Berkovich, Vladimir G..Google Scholar

[12] Henniart, G., ‘Une preuve simple des conjectures de Langlands pour sur un corps -adique’, Invent. Math. 139(2) (2000), 439–455.Google Scholar | DOI

[13] Jacquet, H., ‘A correction to Conducteur des représentations du groupe linéaire’, Pacific J. Math. 260(2) (2012), 515–525.Google Scholar | DOI

[14] Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., ‘Conducteur des représentations du groupe linéaire’, Math. Ann. 256 (2) (1981), 199–214.Google Scholar | DOI

[15] Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., ‘Rankin-Selberg convolutions’, Amer. J. Math. 105(2) (1983), 367–464.Google Scholar | DOI

[16] Knight, H. and Zelevinsky, A. V., ‘Representations of quivers of type and the multisegment duality’, Adv. Math. 117 (2) (1996), 273–293.Google Scholar | DOI

[17] Kondo, S. and Yasuda, S., ‘Local and epsilon factors in Hecke eigenvalues’, J. Number Theory 132 (2012), 1910–1948.Google Scholar | DOI

[18] Kondo, S. and Yasuda, S., ‘Distribution and Euler systems for the general linear group’, Preprint, 2018, .Google Scholar | arXiv

[19] Lansky, J. and Raghuram, A., ‘Conductors and newforms for ’, Proc. Indian Acad. Sci. Math. Sci. 114 (4) (2004), 319–343.Google Scholar | DOI

[20] Lapid, E. M. and Mao, Z., ‘Local Rankin–Selberg integrals for Speh representations’, Compos. Math. 156 (5) (2020), 908–945.Google Scholar | DOI

[21] Lapid, E. M. and Mínguez, A., ‘On a determinantal formula of Tadić’, Amer. J. Math. 136 (1) (2014), 111–142.Google Scholar | DOI

[22] Lapid, E. M. and Mínguez, A., ‘On parabolic induction on inner forms of the general linear group over a non-archimedean local field’, Selecta Math. (N.S.) 22 (4) (2016), 2347–2400.Google Scholar | DOI

[23] Li, W. C. W., ‘Newforms and functional equations’, Math. Ann. 212 (1975), 285–315.Google Scholar | DOI

[24] Mac Lane, S. and Moerdijk, I., ‘Sheaves in Geometry and Logic’, Universitext (Springer-Verlag, New York, 1994, xii+629. Google Scholar

[25] Macdonald, I. G., ‘Symmetric Functions and Hall Polynomials’, second edn, Oxford Science Publications (The Clarendon Press, Oxford University Press, New York, 1995), x+475. With contributions by A. Zelevinsky. Oxford Mathematical Monographs.Google Scholar

[26] Matringe, N., ‘Essential Whittaker functions for ’, Doc. Math. 18 (2013), 1191–1214.Google Scholar

[27] Miyauchi, M., ‘On epsilon factors attached to supercuspidal representations of unramified ’, Trans. Amer. Math. Soc. 365 (6) (2013), 3355–3372.Google Scholar | DOI

[28] Miyauchi, M., ‘On local newforms for unramified ’, Manuscripta Math. 141 (1–2) (2013), 149–169.Google Scholar | DOI

[29] Miyauchi, M., ‘Conductors and newforms for non-supercuspidal representations of unramified ’, J. Ramanujan Math. Soc. 28 (1) (2013), 91–111.Google Scholar

[30] Miyauchi, M., ‘On -factors attached to generic representations of unramified ’, Math. Z. 289 (3–4) (2018), 1381–1408.Google Scholar | DOI

[31] Mœglin, C. and Waldspurger, J.-L., ‘Sur l’involution de Zelevinski’, J. Reine Angew. Math. 372 (1986), 136–177.Google Scholar

[32] Mœglin, C. and Waldspurger, J.-L., ‘Modèles de Whittaker dégénérés pour des groupes -adiques’, Math. Z. 196 (3) (1987), 427–452.Google Scholar | DOI

[33] Okazaki, T., ‘Local Whittaker-newforms for matching to Langlands parameters’, Preprint, 2019, .Google Scholar | arXiv

[34] Procter, K., ‘Parabolic induction via Hecke algebras and the Zelevinsky duality conjecture’, Proc. London Math. Soc. (3) 77 (1) (1998), 79–116.Google Scholar | DOI

[35] Roberts, B. and Schmidt, R., Local Newforms for , Lecture Notes in Mathematics, vol. 1918 (Springer, Berlin, 2007), viii+307.Google Scholar

[36] Roberts, B. and Schmidt, R., ‘On the number of local newforms in a metaplectic representation. Arithmetic geometry and automorphic forms’, Adv. Lect. Math. (ALM), vol. 19 (Int. Press, Somerville, MA, 2011),505–530,Google Scholar

[37] Rodier, F., ‘Représentations de est un corps -adique’, Bourbaki Seminar, vol. 1981/1982 (Soc. Math. France, Paris, 1982), 201–218, Astérisque 92–93.Google Scholar

[38] Tadić, M., ‘Induced representations of for -adic division algebras ’, J. Reine Angew. Math. 405 (1990), 48–77.Google Scholar

[39] Tadić, M., ‘On characters of irreducible unitary representations of general linear groups’, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341–363.Google Scholar | DOI

[40] Tate, J., ‘Number theoretic background. Automorphic forms, representations and L-functions’, in Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Amer. Math. Soc., Providence, R.I., 1979), 3–26.Google Scholar

[41] Tsai, P.-Y., ‘On Newforms for Split Special Odd Orthogonal Groups’, PhD Thesis (Harvard University, 2013), 143.Google Scholar

[42] Zelevinsky, A. V., ‘Induced representations of reductive -adic groups. II. On irreducible representations of ’, Ann. Sci. École Norm. Sup. (4) 13 (2) (1980), 165–210.Google Scholar | DOI

[43] Zelevinsky, A. V., ‘ -adic analogue of the Kazhdan-Lusztig hypothesis’, Funct. Anal. Appl. 15 (1981), 83–92.Google Scholar | DOI

Cité par Sources :