Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_17,
     author = {Hiraku Atobe and Satoshi Kondo and Seidai Yasuda},
     title = {Local newforms for the general linear groups over a non-archimedean local field},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/}
}
                      
                      
                    TY - JOUR AU - Hiraku Atobe AU - Satoshi Kondo AU - Seidai Yasuda TI - Local newforms for the general linear groups over a non-archimedean local field JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/ DO - 10.1017/fmp.2022.17 LA - en ID - 10_1017_fmp_2022_17 ER -
%0 Journal Article %A Hiraku Atobe %A Satoshi Kondo %A Seidai Yasuda %T Local newforms for the general linear groups over a non-archimedean local field %J Forum of Mathematics, Pi %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.17/ %R 10.1017/fmp.2022.17 %G en %F 10_1017_fmp_2022_17
Hiraku Atobe; Satoshi Kondo; Seidai Yasuda. Local newforms for the general linear groups over a non-archimedean local field. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.17
[1] and , ‘Rings and Categories of Modules’, second edn, Graduate Texts in Mathematics, vol. 13 (Springer-Verlag, New York, 1992), x+376. Google Scholar
[2] , and , ‘Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos’, Lecture Notes in Mathematics, vol. 269 (Springer-Verlag, Berlin-New York, 1972), xix+525.Google Scholar
[3] and , ‘Hecke operators on ’, Math. Ann. 185 (1970), 134–160.Google Scholar | DOI
[4] and , ‘Induced representations of reductive -adic groups’, Ann. Sci. École Norm. Sup. (4) 10(4) (1977), 441–472.Google Scholar | DOI
[5] , , and , ‘Doubling constructions and tensor product -functions: the linear case’, Invent. Math. 217(3) (2019), 985–1068.Google Scholar | DOI
[6] , ‘On some results of Atkin and Lehner’, Math. Ann. 201 (1973), 301–314.Google Scholar | DOI
[7] , ‘Unzerlegbare Darstellungen I’, Manuscripta Math. 6 (1972), 71–103.Google Scholar | DOI
[8] and , ‘Zeta Functions of Simple Algebras’, Lecture Notes in Mathematics, vol. 260 (Springer-Verlag, Berlin-New York, 1972), ix+188.Google Scholar
[9] , ‘On the Langlands correspondence for symplectic motives. Izv. Ross ’, Akad. Nauk Ser. Mat. 80(4) (2016), 49–64; translation in Izv. Math. (4) (2016), 678–692.Google Scholar
[10] , ‘Harmonic analysis on reductive -adic groups’, Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., vol. XXVI, Williams Coll., Williamstown, Mass., 1972) (Amer. Math. Soc., Providence, R.I.,, 1973) 167–192.Google Scholar
[11] and , ‘The Geometry and Cohomology of Some Simple Shimura Varieties’, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001), viii+276. With an appendix by .Google Scholar
[12] , ‘Une preuve simple des conjectures de Langlands pour sur un corps -adique’, Invent. Math. 139(2) (2000), 439–455.Google Scholar | DOI
[13] , ‘A correction to Conducteur des représentations du groupe linéaire’, Pacific J. Math. 260(2) (2012), 515–525.Google Scholar | DOI
[14] , and , ‘Conducteur des représentations du groupe linéaire’, Math. Ann. 256 (2) (1981), 199–214.Google Scholar | DOI
[15] , and , ‘Rankin-Selberg convolutions’, Amer. J. Math. 105(2) (1983), 367–464.Google Scholar | DOI
[16] and , ‘Representations of quivers of type and the multisegment duality’, Adv. Math. 117 (2) (1996), 273–293.Google Scholar | DOI
[17] and , ‘Local and epsilon factors in Hecke eigenvalues’, J. Number Theory 132 (2012), 1910–1948.Google Scholar | DOI
[18] and , ‘Distribution and Euler systems for the general linear group’, Preprint, 2018, .Google Scholar | arXiv
[19] and , ‘Conductors and newforms for ’, Proc. Indian Acad. Sci. Math. Sci. 114 (4) (2004), 319–343.Google Scholar | DOI
[20] and , ‘Local Rankin–Selberg integrals for Speh representations’, Compos. Math. 156 (5) (2020), 908–945.Google Scholar | DOI
[21] and , ‘On a determinantal formula of Tadić’, Amer. J. Math. 136 (1) (2014), 111–142.Google Scholar | DOI
[22] and , ‘On parabolic induction on inner forms of the general linear group over a non-archimedean local field’, Selecta Math. (N.S.) 22 (4) (2016), 2347–2400.Google Scholar | DOI
[23] , ‘Newforms and functional equations’, Math. Ann. 212 (1975), 285–315.Google Scholar | DOI
[24] and , ‘Sheaves in Geometry and Logic’, Universitext (Springer-Verlag, New York, 1994, xii+629. Google Scholar
[25] , ‘Symmetric Functions and Hall Polynomials’, second edn, Oxford Science Publications (The Clarendon Press, Oxford University Press, New York, 1995), x+475. With contributions by A. Zelevinsky. Oxford Mathematical Monographs.Google Scholar
[26] , ‘Essential Whittaker functions for ’, Doc. Math. 18 (2013), 1191–1214.Google Scholar
[27] , ‘On epsilon factors attached to supercuspidal representations of unramified ’, Trans. Amer. Math. Soc. 365 (6) (2013), 3355–3372.Google Scholar | DOI
[28] , ‘On local newforms for unramified ’, Manuscripta Math. 141 (1–2) (2013), 149–169.Google Scholar | DOI
[29] , ‘Conductors and newforms for non-supercuspidal representations of unramified ’, J. Ramanujan Math. Soc. 28 (1) (2013), 91–111.Google Scholar
[30] , ‘On -factors attached to generic representations of unramified ’, Math. Z. 289 (3–4) (2018), 1381–1408.Google Scholar | DOI
[31] and , ‘Sur l’involution de Zelevinski’, J. Reine Angew. Math. 372 (1986), 136–177.Google Scholar
[32] and , ‘Modèles de Whittaker dégénérés pour des groupes -adiques’, Math. Z. 196 (3) (1987), 427–452.Google Scholar | DOI
[33] , ‘Local Whittaker-newforms for matching to Langlands parameters’, Preprint, 2019, .Google Scholar | arXiv
[34] , ‘Parabolic induction via Hecke algebras and the Zelevinsky duality conjecture’, Proc. London Math. Soc. (3) 77 (1) (1998), 79–116.Google Scholar | DOI
[35] and , Local Newforms for , Lecture Notes in Mathematics, vol. 1918 (Springer, Berlin, 2007), viii+307.Google Scholar
[36] and , ‘On the number of local newforms in a metaplectic representation. Arithmetic geometry and automorphic forms’, Adv. Lect. Math. (ALM), vol. 19 (Int. Press, Somerville, MA, 2011),505–530,Google Scholar
[37] , ‘Représentations de où est un corps -adique’, Bourbaki Seminar, vol. 1981/1982 (Soc. Math. France, Paris, 1982), 201–218, Astérisque 92–93.Google Scholar
[38] , ‘Induced representations of for -adic division algebras ’, J. Reine Angew. Math. 405 (1990), 48–77.Google Scholar
[39] , ‘On characters of irreducible unitary representations of general linear groups’, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341–363.Google Scholar | DOI
[40] , ‘Number theoretic background. Automorphic forms, representations and L-functions’, in Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Amer. Math. Soc., Providence, R.I., 1979), 3–26.Google Scholar
[41] , ‘On Newforms for Split Special Odd Orthogonal Groups’, PhD Thesis (Harvard University, 2013), 143.Google Scholar
[42] , ‘Induced representations of reductive -adic groups. II. On irreducible representations of ’, Ann. Sci. École Norm. Sup. (4) 13 (2) (1980), 165–210.Google Scholar | DOI
[43] , ‘ -adic analogue of the Kazhdan-Lusztig hypothesis’, Funct. Anal. Appl. 15 (1981), 83–92.Google Scholar | DOI
Cité par Sources :
