Planar random-cluster model: scaling relations
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $, $\gamma $, $\delta $, $\eta $, $\nu $, $\zeta $ as well as $\alpha $ (when $\alpha \ge 0$). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent $\iota $ replacing the four-arm event exponent $\xi _4$.
@article{10_1017_fmp_2022_16,
     author = {Hugo Duminil-Copin and Ioan Manolescu},
     title = {Planar random-cluster model: scaling relations},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.16/}
}
TY  - JOUR
AU  - Hugo Duminil-Copin
AU  - Ioan Manolescu
TI  - Planar random-cluster model: scaling relations
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.16/
DO  - 10.1017/fmp.2022.16
LA  - en
ID  - 10_1017_fmp_2022_16
ER  - 
%0 Journal Article
%A Hugo Duminil-Copin
%A Ioan Manolescu
%T Planar random-cluster model: scaling relations
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.16/
%R 10.1017/fmp.2022.16
%G en
%F 10_1017_fmp_2022_16
Hugo Duminil-Copin; Ioan Manolescu. Planar random-cluster model: scaling relations. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.16

[AB99] Aizenman, M. and Burchard, A., ‘Hölder regularity and dimension bounds for random curves’, Duke Math. J., 99 (1999), 419–453.Google Scholar | DOI

[Bax89] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, (1989), Reprint of the 1982 original.Google Scholar

[BBCK00] Biskup, M., Borgs, C., Chayes, J. T. and Kotecký, R., ‘Gibbs states of graphical representations of the Potts model with external fields’, Journal of Mathematical Physics 41(3) (2000), 1170–1210.Google Scholar | DOI

[BD12] Beffara, V. and Duminil-Copin, H., ‘The self-dual point of the two-dimensional random-cluster model is critical for ’, Probab. Theory Related Fields 153(3–4) (2012), 511–542.Google Scholar | DOI

[BD12b] Beffara, V. and Duminil-Copin, H., ‘Smirnov’s fermionic observable away from criticality’, Annals of Probability 40(6) (2012), 2667–2689.Google Scholar | DOI

[BD13] Beffara, V. and Duminil-Copin, H., ‘Lectures on planar percolation with a glimpse of Schramm Loewner Evolution’. Probability Surveys 10 (2013), 1–50.Google Scholar | DOI

[BDS15] Beffara, V., Duminil-Copin, H. and Smirnov, S., ‘On the critical parameters of the random-cluster model on isoradial graphs’, Journal Physics A: Mathematical and Theoretical 48(48) (2015), 484003.Google Scholar | DOI

[BCKS01] Borgs, C., Chayes, J. T., Kesten, H. and Spencer, J., ‘The birth of the infinite cluster: finite-size scaling in percolation’, Communications in Mathematical Physics 224(1) (2001), 153–204.Google Scholar | DOI

[BCKS99] Borgs, C., Chayes, J. T., Kesten, H. and Spencer, J., ‘Uniform boundedness of critical crossing probabilities implies hyperscaling’, Rand. Struc. Alg. 15 (1999), 368–413.Google Scholar | DOI

[BW02] Buhrman, H. and De Wolf, R., ‘Complexity measures and decision tree complexity: a survey’, Theoretical Computer Science 288(1) (2002), 21–43.Google Scholar | DOI

[CDH16] Chelkak, D., Duminil-Copin, H. and Hongler, C., ‘Crossing probabilities in topological rectangles for the critical planar FK-Ising model’, Electron. J. Probab 5 (2016), 28 pages.Google Scholar

[CDHKS14] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S., ‘Convergence of Ising interfaces to Schramm’s SLE curves’, C. R. Acad. Sci. Paris Math. 352(2) (2014), 157–161.Google Scholar | DOI

[CGN14] Camia, F., Garban, C. and Newman, C. M., ‘The Ising magnetization exponent is ’, Probability Theory and Related Fields 160(1–2) (2014), 175–187.Google Scholar | DOI

[CN07] Camia, F. and Newman, C. M., ‘Critical percolation exploration path and : a proof of convergence’, Probability Theory and Related Fields 139(3-4) 473–519, (2007).Google Scholar | DOI

[OSSS05] O’Donnell, R., Saks, M., Schramm, O. and Servedio, R., Every Decision Tree Has an Influential Variable (FOCS, (2005).Google Scholar

[Dum17] Duminil-Copin, H., ‘Lectures on the Ising and Potts models on the hypercubic lattice’, in PIMS-CRM Summer School in Probability (Springer), 35–161, .Google Scholar | arXiv

[Dum13] Duminil-Copin, H., Parafermionic Observables and Their Applications to Planar Statistical Physics Models, Ensaios Matematicos, vol. 25 (Brazilian Mathematical Society, 2013).Google Scholar

[DGHMT16] Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I. and Tassion, V., ‘Discontinuity of the phase transition for the planar random-cluster and Potts models with ’, Annales Scientifiques de l’Ecole Normale Supérieure 54(6) (2021), 1363–1413.Google Scholar | DOI

[DGP14] Duminil-Copin, H., Garban, C. and Pete, G., ‘The near-critical planar FK-Ising model’, Communications in Mathematical Physics 326(1) (2014), 1–35.Google Scholar | DOI

[DGPS17] Duminil-Copin, H., Glazman, A., Peled, R. and Spinka, Y., ‘Macroscopic loops in the loop O(n) model at Nienhuis’ critical point’, Journal of the European Mathematical Society 23(1) (2020), 315–347.Google Scholar | DOI

[DIV16] Duminil-Copin, H., Ioffe, D. and Velenik, Y., ‘A quantitative Burton-Keane estimate under strong FKG condition’, Annals of Probability 44(5) (2016), 3335–3356.Google Scholar | DOI

[DM16] Duminil-Copin, H. and Manolescu, I., ‘The phase transitions of the planar random-cluster and Potts models with are sharp’, Probability Theory and Related Fields 164(3) (2016), 865–892.Google Scholar | DOI

[DKKMO20] Duminil-Copin, H., Kozlowski, K., Krachun, D., Manolescu, I. and Oulamara, M., ‘Rotational invariance in critical planar lattice models’ (2020), .Google Scholar | arXiv

[DMT20] Duminil-Copin, H., Manolescu, I. and Tassion, V., ‘Planar random-cluster model: fractal properties of the critical phase’ (2020) .Google Scholar | arXiv

[DMT20b] Duminil-Copin, H., Manolescu, I. and Tassion, V., ‘Near critical scaling relations for planar Bernoulli percolation without differential inequalities’ (2021), .Google Scholar | arXiv

[DRT18] Duminil-Copin, H., Raoufi, A. and Tassion, V., ‘A new computation of the critical point for the planar random-cluster model with , Ann. Inst. H. Poincaré Probab. Statist. 54(1) (2018), 422–436.Google Scholar | DOI

[DRT19] Duminil-Copin, H., Raoufi, A. and Tassion, V., ‘Sharp phase transition for the random-cluster and Potts models via decision trees’, Annals of Mathematics 189(1) (2019), 75–99.Google Scholar | DOI

[DST17] Duminil-Copin, H., Sidoravicius, V. and Tassion, V., ‘Continuity of the phase transition for planar random-cluster and potts models with , Communications in Mathematical Physics 349(1) (2017), 47–107.Google Scholar | DOI

[DS12] Duminil-Copin, H. and Smirnov, S., ‘The connective constant of the honeycomb lattice equals , Ann. of Math. (2) 175(3) (2012), 1653–1665.Google Scholar | DOI

[DT19] Duminil-Copin, H. and Tassion, V., ‘Renormalization of crossing probabilities in the planar random-cluster model’, Moscow Mathematical Journal, 20(4) (2020), 711–740.Google Scholar | DOI

[EF63] Essam, J. W. and Fisher, M. E., ‘Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point’, J. Chem. Phys. 38(4) (1963), 802–812.Google Scholar | DOI

[Fis64] Fisher, M. E., ‘Correlation functions and the critical region of simple fluids’, J. Math. Phys. 5(7) (1964), 944–962.Google Scholar | DOI

[Fis98] Fisher, M. E., ‘Renormalization group theory: its basis and formulation in statistical physics’, Rev. Modern Phys. 70(2) (1998), 653–681.Google Scholar | DOI

[FK72] Fortuin, C. M. and Kasteleyn, P. W., ‘On the random-cluster model. I. Introduction and relation to other models’, Physica 57 (1972), 536–564.Google Scholar | DOI

[For71] Fortuin, C. M., On the Random-Cluster Model, Doctoral thesis (University of Leiden, 1971).Google Scholar

[GPS18] Garban, C., Pete, G. and Schramm, O., ‘The scaling limits of near-critical and dynamical percolation’, J. European Math. Society 20(5) (2018), 1195–1268.Google Scholar | DOI

[GPS10] Garban, C., Pete, G. and Schramm, O., ‘The Fourier spectrum of critical percolation’, Acta Math. 205(1) (2010), 19–104.Google Scholar | DOI

[GPS13] Garban, C., Pete, G. and Schramm, O., ‘Pivotal, cluster, and interface measures for critical planar percolation’, Journal American Mathematical Society 26(4) (2013), 939–1024.Google Scholar | DOI

[GW19] Garban, C. and Wu, H., ‘On the convergence of FK-Ising Percolation to SLE()’, Journal of Theoretical Probability 1–38 (2019).Google Scholar

[Gri06] Grimmett, G., The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333 (Springer-Verlag, Berlin, 2006).Google Scholar | DOI

[HS13] Hongler, C. and Smirnov, S., ‘The energy density in the planar Ising model , Acta Math. 211(2) (2013), 191–225.Google Scholar | DOI

[Kes87] Kesten, H., ‘Scaling relations for D-percolation’, Communications in Mathematical Physics 109(1) (1987), 109–156.Google Scholar | DOI

[KSZ98] Kesten, H., Sidoravicius, V. and Zhang, Y., ‘Almost all words are seen in critical site percolation on the triangular lattice’, Elec. J. Probab. 3, paper no. 10 (1998).Google Scholar | DOI

[KZ87] Kesten, H. and Zhang, Y., ‘Strict inequalities for some critical exponents in two-dimensional percolation’, Journal of Statistical Physics 46(5–6) (1987), 1031–1055.Google Scholar | DOI

[KMS15] Kiss, D., Manolescu, I. and Sidoravicius, V., ‘Planar lattices do not recover from forest fires’, Ann. Probab. 43(6) (2015), 3216–3238.Google Scholar | DOI

[LSW02] Lawler, G., Schramm, O. and Werner, W., ‘One-arm exponent for critical 2D percolation’, Elec. J. Probab. 7, paper no.2 (2002).Google Scholar | DOI

[MW83] Mccoy, B. M. and Wu, T. T., ‘Ising model correlation functions: difference equations and applications to gauge theory’, Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981) (World Sci. Publishing, Singapore, 1983), 121–134.Google Scholar

[MilWer18] Miller, J. and Werner, W., ‘Connection probabilities for conformal loop ensembles’, Communications in Mathematical Physics 362 (2018), 415–453.Google Scholar | DOI

[Nol08] Nolin, P., ‘Near-critical percolation in two dimensions’, Electron. J. Probab. 13 (2008), 1562–1623.Google Scholar | DOI

[Ons44] Onsager, L., ‘ Crystal statistics. I. A two-dimensional model with an order-disorder transition’, Phys. Rev. 65 (1944), 117–149.Google Scholar | DOI

[Pol70] Polyakov, A. M., ‘Conformal symmetry of critical fluctuations’. JETP Lett 12 (1970), 381–383.Google Scholar

[RS20] Ray, G. and Spinka, Y., ‘A short proof of the discontinuity of phase transition in the planar random-cluster model with , Communications in Mathematical Physics 378(3) (2020), 1977–1988.Google Scholar | DOI

[Rus78] Russo, L., ‘A note on percolation’, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43(1) (1978), 39–48.Google Scholar | DOI

[RS05] Rohde, S. and Schramm, O., ‘Basic properties of SLE’, Annals of Mathematics 161 (2005), 883–924.Google Scholar | DOI

[SSW09] Schramm, O., Sheffield, S. and Wilson, D. B., ‘Conformal radii for conformal loop ensembles’, Communications in Mathematical Physics 288(1) (2009), 43–53.Google Scholar | DOI

[SchSmi11] Schramm, O and S. Smirnov, ‘On the scaling limits of planar percolation’, Ann. Probab. 39(5) (2011), 1768–1814.Google Scholar | DOI

[SS10] Schramm, O. and Steif, J., ‘Quantitative noise sensitivity and exceptional times for percolation’. Annals of Mathematics 171 (2010), 619–672.Google Scholar | DOI

[SW78] Seymour, P. D. and Welsh, D. J. A., ‘Percolation probabilities on the square lattice’, Ann. Discrete Math. 3 (1978), 227–245.Google Scholar | DOI

[SW12] Sheffield, S. and Werner, W., ‘Conformal loop ensembles: the Markovian characterization and the loop-soup construction’, Ann. Math. 176 (2012), 1827–(1917).Google Scholar | DOI

[Smi01] Smirnov, S., ‘Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits’, C. R. Acad. Sci. Paris Sér. I Math. 333(3) (2001), 239–244.Google Scholar | DOI

[Smi10] Smirnov, S., ‘Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model’, Ann. of Math. (2), 172(2) (2010), 1435–1467.Google Scholar | DOI

[SW01] Smirnov, S. and Werner, W., ‘Critical exponents for two-dimensional percolation’, Math. Res. Lett. 8(5–6) (2001), 729–744.Google Scholar | DOI

[Wid65] Widom, B., ‘Equation of state in the neighborhood of the critical point’. J. Chem. Phys. 43(11) (1965), 3898–3905.Google Scholar | DOI

[Wu18] Wu, H., ‘Alternating arm exponents for the critical planar Ising model’, Ann. Probab. 46(5) (2018), 2863–2907.Google Scholar | DOI

Cité par Sources :