Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions and derive applications regarding the local cohomological dimension, the Du Bois complex, local vanishing and reflexive differentials associated to Z.
@article{10_1017_fmp_2022_15,
     author = {Mircea Musta\c{t}\u{a} and Mihnea Popa},
     title = {Hodge filtration on local cohomology, {Du} {Bois} complex and local cohomological dimension},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.15/}
}
TY  - JOUR
AU  - Mircea Mustaţă
AU  - Mihnea Popa
TI  - Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.15/
DO  - 10.1017/fmp.2022.15
LA  - en
ID  - 10_1017_fmp_2022_15
ER  - 
%0 Journal Article
%A Mircea Mustaţă
%A Mihnea Popa
%T Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.15/
%R 10.1017/fmp.2022.15
%G en
%F 10_1017_fmp_2022_15
Mircea Mustaţă; Mihnea Popa. Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.15

[1] Arapura, D., Bakhtary, P. and Włodarczyk, J., Weights on cohomology, invariants of singularities, and dual complexes’, Math. Ann. 357 (2013), 513–550.Google Scholar | DOI

[2] Blanco, G., ‘An algorithm for Hodge ideals, Preprint, 2021, to appear in Math. Comp.Google Scholar | arXiv | DOI

[3] Bănică, C. and Stănăşilă, O., Algebraic Methods in the Global Theory of Complex Spaces, (John Wiley & Sons, London, New York, Sydney, 1976).Google Scholar

[4] Bhatt, B., Blickle, M., Lyubeznik, G., Singh, A. and Zhang, W., In preparation.Google Scholar

[5] Bruns, W. and Vetter, U., ‘ Determinantal rings’, in Lecture Notes in Mathematics, 1327 (Springer-Verlag, Berlin, 1988).Google Scholar | DOI

[6] Budur, N., Mustaţǎ, M. and Saito, M., Bernstein-Sato polynomials of arbitrary varieties’, Compos. Math. 142 (2006), 779–797.Google Scholar | DOI

[7] Dao, H., De Stefani, A. and Ma, L., Cohomologically full rings’, Int. Math. Res. Not. 17 (2021), 13508–13545.Google Scholar | DOI

[8] Dao, H. and Takagi, S., On the relationship between depth and cohomological dimension’, Compositio Math. 152 (2016), 876–888.Google Scholar | DOI

[9] Du Bois, P., Complexe de de Rham filtré d’une variété singulière’, Bull. Soc. Math. France 109 (1981), 41–81.Google Scholar | DOI

[10] Eisenbud, D., Mustaţǎ, M. and Stillman, M., Cohomology on toric varieties and local cohomology with monomial supports’, J. Symbolic Comput. 29 (2000), 583–600.Google Scholar

[11] El Zein, F., Mixed Hodge structures’, Trans. Amer. Math. Soc. 275 (1983), 71–106.Google Scholar | DOI

[12] Esnault, H. and Viehweg, E., Revêtements cycliques , in Algebraic Threefolds (Varenna, 1981), Lecture Notes in Mathematics 947 (Springer, Berlin-New York, 1982), 241–250.Google Scholar

[13] Faltings, G., Über lokale Kohomologiegruppen hoher Ordnung’, J. Reine Angew. Math. 313 (1980), 43–51.Google Scholar

[14] Guillén, F., Navarro Aznar, V., Pascual Gainza, P. and Puerta, F., ‘Hyperrésolutions cubiques et descente cohomologique’, in Lecture Notes in Mathematics, 1335, Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982 (Springer-Verlag, Berlin, 1988).Google Scholar | DOI

[15] Hartshorne, R., Local cohomology’, in Lecture Notes in Mathematics, 41 (Springer, New York, Heidelberg, Berlin, 1967).Google Scholar | DOI

[16] Hartshorne, R., Cohomological dimension of algebraic varieties’, Ann. of Math. 88 (1968), 403–450.Google Scholar | DOI

[17] Hartshorne, R., On the de Rham cohomology of algebraic varieties’, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 5–99.Google Scholar | DOI

[18] Hotta, R., Takeuchi, K. and Tanisaki, T., D-modules, Perverse Sheaves, and Representation Theory, (Birkhäuser, Boston, 2008).Google Scholar | DOI

[19] Huber, A. and Jörder, C., Differential forms in the h-topology’, Algebr. Geom. 1 (2014), 449–478.Google Scholar | DOI

[20] Huneke, C. and Koh, J., Cofiniteness and vanishing of local cohomology modules’, Math.Proc. Camb. Phil. Soc. 110 (1991), 421–429.Google Scholar | DOI

[21] Huneke, C. and Lyubeznik, G., On the vanishing of local cohomology modules’, Invent. Math. 102 (1990), 73–93.Google Scholar | DOI

[22] Iyengar, S., Depth for complexes, and intersection theorems’, Math. Z. 230 (1999), 545–567.Google Scholar | DOI

[23] Jung, S.-J., Kim, I.-K., Saito, M. and Yoon, Y., Hodge ideals and spectrum of isolated hypersurface singularities’, Ann. Inst. Fourier 72 (2022), 465–510.Google Scholar | DOI

[24] Jung, S.-J., Kim, I.-K., Saito, M. and Yoon, Y., Higher Du Bois singularities of hypersurfaces, Preprint, 2021, .Google Scholar | arXiv

[25] Kebekus, S. and Schnell, C., Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities’, J. Amer. Math. Soc. 34 (2021), 315–368.Google Scholar | DOI

[26] Kollár, J. and Kovács, S., Deformations of log canonical and -pure singularities’, Algebr. Geom. 7 (2020), 758–780.Google Scholar | DOI

[27] Kovács, S., Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink’, Compositio Math. 118 (1999), 123–133.Google Scholar

[28] Kovács, S. and Schwede, K., Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities’, in Topology of Stratified Spaces 58 (Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2011), 51–94,Google Scholar

[29] Kovács, S. and Schwede, K., ‘Du Bois singularities deform, minimal models and extremal rays’ (Kyoto, 2011), in Adv. Stud. in Pure Math. 70 (Mathematical Society of Japan, Tokyo, 2016), 49–65.Google Scholar

[30] Kustin, A., Canonical complexes associated to a matrix’, J. Algebra 460 (2016), 60–101.Google Scholar | DOI

[31] Lyubeznik, G., ‘On the local cohomology modules for ideals generated by monomials in an -sequence’, in Complete Intersections (Acireale, 1983), Lecture Notes in Mathematics 1092 (Springer, Berlin, 1984), 214–220.Google Scholar

[32] Lyubeznik, G., Finiteness properties of local cohomology modules (an application of D-modules to Commutative Algebra) , Invent. Math. 113 (1993), 41–55.Google Scholar | DOI

[33] Ma, L., Schwede, K. and Shimomoto, K., Local cohomology of Du Bois singularities and applications to families’, Compositio Math. 153 (2017), 2147–2170.Google Scholar | DOI

[34] Mustaţă, M., Olano, S. and Popa, M., Local vanishing and Hodge filtration for rational singularities’, J. Inst. Math. Jussieu 19 (2020), 801–819.Google Scholar | DOI

[35] Mustaţă, M. and Popa, M., Restriction, subadditivity, and semicontinuity theorems for Hodge ideals’, Int. Math. Res. Not. 11 (2018), 3587–3605.Google Scholar | DOI

[36] Mustaţă, M. and Popa, M., Hodge ideals , Memoirs of the AMS 262 (2019).Google Scholar | DOI

[37] Mustaţă, M. and Popa, M., ‘Hodge ideals for -divisors: birational approach’, J. de l’École Polytechnique 6 (2019), 283–328.Google Scholar | DOI

[38] Mustaţă, M. and Popa, M., ‘Hodge ideals for -divisors, -filtration, and minimal exponent’, Forum of Math ., Sigma 8 (2020), 41pp.Google Scholar

[39] Mustaţă, M. and Popa, M., Hodge filtration, minimal exponent, and local vanishing’, Invent. Math. 220 (2020), 453–478.Google Scholar | DOI

[40] Mustaţă, M. and Popa, M., Hodge ideals and minimal exponents of ideals’, Rev. Roumaine Math. Pures Appl. 65 (2020), 327–354.Google Scholar

[41] Mustaţă, M., Olano, S., Popa, M. and Witaszek, J., ‘The Du Bois complex of a hypersurface and the minimal exponent, Preprint, 2021, to appear in Duke. Math. J.Google Scholar | arXiv

[42] Namikawa, Y., ‘Deformation theory of singular symplectic -folds’, Math. Ann. 319 (2001), 597–623.Google Scholar | DOI

[43] Ogus, A., Local cohomological dimension of algebraic varieties , Ann. of Math. 98 (1973), 327–365.Google Scholar | DOI

[44] Perlman, M., ‘Mixed Hodge structure on local cohomology with support in determinantal varieties’, Preprint, 2021, .Google Scholar | arXiv

[45] Perlman, M. and Raicu, C., ‘Hodge ideals for the determinant hypersurface’, Preprint, 2020, to appear in Selecta Math.Google Scholar | arXiv | DOI

[46] Peskine, C. and Szpiro, L., Dimension projective finie et cohomologie locale’, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 47–119.Google Scholar | DOI

[47] Peters, C. and Steenbrink, J., Mixed Hodge structures’, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 52 (Springer-Verlag, Berlin, 2008).Google Scholar

[48] Saito, M., Modules de Hodge polarisables’, Publ. Res. Inst. Math. Sci. 24 (1988), 849–995.Google Scholar | DOI

[49] Saito, M., Mixed Hodge modules’, Publ. Res. Inst. Math. Sci. 26 (1990), 221–333.Google Scholar | DOI

[50] Saito, M., ‘On -function, spectrum and rational singularity’, Math. Ann. 295 (1993), 51–74.Google Scholar | DOI

[51] Saito, M., Mixed Hodge complexes on algebraic varieties’, Math. Ann. 316 (2000), 283–331.Google Scholar | DOI

[52] Saito, M., ‘Direct image of logarithmic complexes and infinitesimal invariants of cycles’, in Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser. 344 (Cambridge Univ. Press, Cambridge, 2007), 304–318.Google Scholar

[53] Saito, M., ‘Hodge ideals and microlocal -filtration’, Preprint, 2016, .Google Scholar | arXiv

[54] Saito, M., ‘Local cohomological dimension and rectified -homological depth of complex analytic spaces’, Preprint, 2021, .Google Scholar | arXiv

[55] Schwede, K., ‘A simple characterization of Du Bois singularities’, Compositio Math. 143 (2007), 813–828.Google Scholar | DOI

[56] Schwede, K., ‘-injective singularities are Du Bois’, Amer. J. Math. 131 (2009), 445–473.Google Scholar | DOI

[57] The Stacks Project Authors, Stacks Project, 2021, https://stacks.math.columbia.edu.Google Scholar

[58] Steenbrink, J. H. M., Mixed Hodge structure on the vanishing cohomology’, in Real and Complex Singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976 130 (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977), 525–563.Google Scholar

[59] Steenbrink, J. H. M., Vanishing theorems on singular spaces’, Astérisque 130 (1985), 330–341.Google Scholar

[60] Van Straten, D. and Steenbrink, J., Extendability of holomorphic differential forms near isolated hypersurface singularities , Abh. Math. Sem. Univ. Hamburg 55 (1985), 97–110.Google Scholar | DOI

[61] Varbaro, M., Cohomological and projective dimensions’, Compositio Math. 149 (2013), 1203–1210.Google Scholar | DOI

Cité par Sources :