Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $X_{\overline {K}}$ has infinitely many rational curves or X has infinitely many unirational specialisations.Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
@article{10_1017_fmp_2022_14,
     author = {Ananth N. Shankar and Arul Shankar and Yunqing Tang and Salim Tayou},
     title = {Exceptional jumps of {Picard} ranks of reductions of {K3} surfaces over number fields},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/}
}
TY  - JOUR
AU  - Ananth N. Shankar
AU  - Arul Shankar
AU  - Yunqing Tang
AU  - Salim Tayou
TI  - Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/
DO  - 10.1017/fmp.2022.14
LA  - en
ID  - 10_1017_fmp_2022_14
ER  - 
%0 Journal Article
%A Ananth N. Shankar
%A Arul Shankar
%A Yunqing Tang
%A Salim Tayou
%T Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/
%R 10.1017/fmp.2022.14
%G en
%F 10_1017_fmp_2022_14
Ananth N. Shankar; Arul Shankar; Yunqing Tang; Salim Tayou. Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.14

[AGHMP17] Andreatta, Fabrizio, Goren, Eyal Z., Howard, Benjamin, and Pera, Keerthi Madapusi. Height pairings on orthogonal Shimura varieties. Compos. Math., 153(3):474–534, 2017.Google Scholar | DOI

[AGHMP18] Andreatta, Fabrizio, Goren, Eyal Z., Howard, Benjamin, and Pera, Keerthi Madapusi. Faltings heights of abelian varieties with complex multiplication. Ann. of Math. (2), 187(2):391–531, 2018.Google Scholar | DOI

[And96] André, Yves. On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann., 305(2):205–248, 1996.Google Scholar | DOI

[AS64] Abramowitz, Milton and Stegun, Irene A.. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series. Government Printing Office, Washington, D.C., 1964.Google Scholar

[Bas74] Bass, Hyman. Clifford algebras and spinor norms over a commutative ring. Amer. J. Math., 96:156–206, 1974.Google Scholar | DOI

[BF04] Bruinier, Jan Hendrik and Funke, Jens. On two geometric theta lifts. Duke Math. J., 125(1):45–90, 2004.Google Scholar | DOI

[BHK+17] Bruinier, Jan, Howard, Benjamin, Kudla, Stephen S, Rapoport, Michael, and Yang, Tonghai. Modularity of generating series of divisors on unitary Shimura varieties. arXiv preprint , 2017.Google Scholar | arXiv

[BHT11] Bogomolov, Fedor, Hassett, Brendan, and Tschinkel, Yuri. Constructing rational curves on K3 surfaces. Duke Math. J., 157(3):535–550, 04 2011.Google Scholar | DOI

[BK01] Bruinier, Jan Hendrik and Kuss, Michael. Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscripta Math., 106(4):443–459, 2001.Google Scholar | DOI

[BK03] Bruinier, Jan Hendrik and Kühn, Ulf. Integrals of automorphic Green’s functions associated to Heegner divisors. Int. Math. Res. Not., 31:1687–1729, 2003.Google Scholar | DOI

[Bor98] Borcherds, Richard E.. Automorphic forms with singularities on Grassmannians. Invent. Math., 132(3):491–562, 1998.Google Scholar | DOI

[Bor99] Borcherds, Richard E.. The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J., 97(2):219–233, 1999.Google Scholar | DOI

[Bru02] Bruinier, Jan H.. Borcherds products on O(2, ) and Chern Classes of Heegner Divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.Google Scholar

[BT05] Bogomolov, Fedor and Tschinkel, Yuri. Rational curves and points on K3 surfaces. Amer. J. Math., 127(4):825–835, 2005.Google Scholar | DOI

[BY09] Bruinier, Jan Hendrik and Yang, Tonghai. Faltings heights of CM cycles and derivatives of -functions. Invent. Math., 177(3):631–681, 2009.Google Scholar | DOI

[CEJ16] Costa, Edgar, Elsenhans, Andreas-Stephan, and Jahnel, Jörg. On the distribution of the Picard ranks of the reductions of a K3 surface. arXiv e-prints, page , Oct 2016.Google Scholar | arXiv

[CGL19] Chen, Xi, Gounelas, Frank, and Liedtke, Christian. Curves on K3 surfaces. arXiv e-prints, page , Jul 2019.Google Scholar | arXiv

[Cha14] Charles, François. On the Picard number of K3 surfaces over number fields. Algebra Number Theory, 8(1):1–17, 2014.Google Scholar | DOI

[Cha18] Charles, François. Exceptional isogenies between reductions of pairs of elliptic curves. Duke Math. J., 167(11):2039–2072, 08 2018.Google Scholar | DOI

[Che99] Chen, Xi. Rational curves on surfaces. J. Alg. Geom, pages 245–278, 1999.Google Scholar

[CL13] Chen, Xi and Lewis, James D.. Density of rational curves on surfaces. Math. Ann., 356(1):331–354, 2013.Google Scholar | DOI

[Con04] Conrad, Brian. Gross-Zagier revisited. In Heegner Points and Rankin -Series, volume 49 of Math. Sci. Res. Inst. Publ., pages 67–163. Cambridge Univ. Press, Cambridge, 2004. With an appendix by W. R. Mann.Google Scholar | DOI

[CT14] Costa, Edgar and Tschinkel, Yuri. Variation of Néron-Severi ranks of reductions of surfaces. Exp. Math., 23(4):475–481, 2014.Google Scholar | DOI

[Del72] Deligne, Pierre. La conjecture de Weil pour les surfaces K3. Invent. Math., 15:206–226, 1972.Google Scholar | DOI

[Del74] Deligne, Pierre. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., 43:273–307, 1974.Google Scholar | DOI

[Del79] Deligne, Pierre. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In Automorphic Forms, Representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 247–289. Amer. Math. Soc., Providence, R.I., 1979.Google Scholar | DOI

[DMOS82] Deligne, Pierre, Milne, James S., Ogus, Arthur, and Shih, Kuang-Yen. Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.Google Scholar | DOI

[EK95] Eskin, Alex and Katznelson, Yonatan R.. Singular symmetric matrices. Duke Math. J., 79(2):515–547, 1995.Google Scholar | DOI

[Ger08] Gerstein, Larry J.. Basic Quadratic Forms, volume 90 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.Google Scholar

[GS90] Gillet, Henri and Soulé, Christophe. Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math., 72:93–174 (1991), 1990.Google Scholar

[Han04] Hanke, Jonathan. Local densities and explicit bounds for representability by a quadratic form. Duke Math. J., 124(2):351–388, 2004.Google Scholar | DOI

[HB96] Heath-Brown, D. R.. A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math., 481:149–206, 1996.Google Scholar

[HM17] Howard, B. and Madapusi Pera, K.. Arithmetic of Borcherds products. ArXiv e-prints, October 2017.Google Scholar

[Hof14] Hofmann, Eric. Borcherds products on unitary groups. Math. Ann., 358(3-4):799–832, 2014.Google Scholar | DOI

[Huy16] Huybrechts, Daniel. Lectures on K3 Surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.Google Scholar | DOI

[Iwa97] Iwaniec, Henryk. Topics in Classical Automorphic Forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.Google Scholar

[Kis10] Kisin, Mark. Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc., 23(4):967–1012, 2010.Google Scholar | DOI

[Kis17] Kisin, Mark. points on Shimura varieties of abelian type. J. Amer. Math. Soc., 30(3):819–914, 2017.Google Scholar | DOI

[KM90] Kudla, Stephen S. and Millson, John J.. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Publ. Math., Inst. Hautes Étud. Sci., 71:121–172, 1990.Google Scholar | DOI

[KR00] Kudla, Stephen S. and Rapoport, Michael. Cycles on Siegel threefolds and derivatives of Eisenstein series. Ann. Sci. École Norm. Sup. (4), 33(5):695–756, 2000.Google Scholar | DOI

[KR14] Kudla, Stephen and Rapoport, Michael. Special cycles on unitary Shimura varieties II: Global theory. J. Reine Angew. Math., 697:91–157, 2014.Google Scholar

[KRY04] Kudla, Stephen S., Rapoport, Michael, and Yang, Tonghai. Derivatives of Eisenstein series and Faltings heights. Compos. Math., 140(4):887–951, 2004.Google Scholar | DOI

[KS67] Kuga, Michio and Satake, Ichirô. Abelian varieties attached to polarized K3-surfaces. Math. Ann., 169:239–242, 1967.Google Scholar | DOI

[LL12] Li, Jun and Liedtke, Christian. Rational curves on K3 surfaces. Inventiones mathematicae, 188(3):713–727, 2012.Google Scholar | DOI

[MM83] Mori, Shigefumi and Mukai, Shigeru. The uniruledness of the moduli space of curves of genus . In Algebraic Geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 334–353. Springer, Berlin, 1983.Google Scholar | DOI

[MP15] Pera, Keerthi Madapusi. The Tate conjecture for K3 surfaces in odd characteristic. Invent. Math., 201(2):625–668, 2015.Google Scholar | DOI

[MP16] Pera, Keerthi Madapusi. Integral canonical models for spin Shimura varieties. Compos. Math., 152(4):769–824, 2016.Google Scholar | DOI

[MST18] Maulik, Davesh, Shankar, Ananth N., and Tang, Yunqing. Reductions of abelian surfaces over global function fields. arXiv e-prints, page , Dec 2018.Google Scholar | arXiv

[MST22] Maulik, Davesh, Shankar, Ananth N., and Tang, Yunqing. Picard ranks of K3 surfaces and the Hecke orbit conjecture. Invent. Math., 228(3):1075–1143, 2022.Google Scholar | DOI

[Nie10] Niedermowwe, N.. The circle method with weights for the representation of integers by quadratic forms. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 377 (Issledovaniya po Teorii Chisel. 10):91–110, 243, 2010.Google Scholar

[Sar90] Sarnak, Peter. Some Applications of Modular Forms, volume 99 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.Google Scholar | DOI

[Sch68] Schmidt, Wolfgang M.. Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J., 35:327–339, 1968.Google Scholar | DOI

[Sou92] Soulé, C.. Lectures on Arakelov geometry, volume 33 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer.Google Scholar | DOI

[ST19] Shankar, A. N. and Tang, Y.. Exceptional splitting of reductions of abelian surfaces. Duke Math. J. 2019.Google Scholar

[Tan90] Tankeev, S. G.. Surfaces of K3 type over number fields and the Mumford-Tate conjecture. Izv. Akad. Nauk SSSR Ser. Mat., 54(4):846–861, 1990.Google Scholar

[Tan95] Tankeev, S. G.. Surfaces of K3 type over number fields and the Mumford-Tate conjecture. II. Izv. Ross. Akad. Nauk Ser. Mat., 59(3):179–206, 1995.Google Scholar

[Tay20a] Tayou, Salim. On the equidistribution of some Hodge loci. J. Reine Angew. Math., 762:167–194, 2020.Google Scholar | DOI

[Tay20b] Tayou, Salim. Rational curves on elliptic K3 surfaces. Math. Res. Lett., 27(4):1237–1247, 2020.Google Scholar | DOI

[Tay22] Tayou, Salim. Picard rank jumps for K3 surfaces with bad reduction. arXiv e-prints, page , March 2022.Google Scholar | arXiv

[Vas08] Vasiu, Adrian. Some cases of the Mumford-Tate conjecture and Shimura varieties. Indiana Univ. Math. J., 57(1):1–75, 2008.Google Scholar | DOI

[vG00] Van Geemen, Bert. Kuga-Satake varieties and the Hodge conjecture. In The Arithmetic and Geometry of Algebraic cyCles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 51–82. Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar

[vG08] Van Geemen, Bert. Real multiplication on K3 surfaces and Kuga-Satake varieties. Michigan Math. J., 56(2):375–399, 2008.Google Scholar | DOI

[Voi02] Voisin, C.. Théorie de Hodge et géométrie algébrique complexe. Collection SMF. Société Mathématique de France, 2002.Google Scholar

[Wei49] Weil, André. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497–508, 1949.Google Scholar | DOI

[Zyw14] Zywina, David. The splitting of reductions of an abelian variety. Int. Math. Res. Not., 2014(18):5042–5083, 2014.Google Scholar | DOI

Cité par Sources :