Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_14,
author = {Ananth N. Shankar and Arul Shankar and Yunqing Tang and Salim Tayou},
title = {Exceptional jumps of {Picard} ranks of reductions of {K3} surfaces over number fields},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2022.14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/}
}
TY - JOUR AU - Ananth N. Shankar AU - Arul Shankar AU - Yunqing Tang AU - Salim Tayou TI - Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/ DO - 10.1017/fmp.2022.14 LA - en ID - 10_1017_fmp_2022_14 ER -
%0 Journal Article %A Ananth N. Shankar %A Arul Shankar %A Yunqing Tang %A Salim Tayou %T Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields %J Forum of Mathematics, Pi %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.14/ %R 10.1017/fmp.2022.14 %G en %F 10_1017_fmp_2022_14
Ananth N. Shankar; Arul Shankar; Yunqing Tang; Salim Tayou. Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.14
[AGHMP17] , , , and . Height pairings on orthogonal Shimura varieties. Compos. Math., 153(3):474–534, 2017.Google Scholar | DOI
[AGHMP18] , , , and . Faltings heights of abelian varieties with complex multiplication. Ann. of Math. (2), 187(2):391–531, 2018.Google Scholar | DOI
[And96] . On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann., 305(2):205–248, 1996.Google Scholar | DOI
[AS64] and . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series. Government Printing Office, Washington, D.C., 1964.Google Scholar
[Bas74] . Clifford algebras and spinor norms over a commutative ring. Amer. J. Math., 96:156–206, 1974.Google Scholar | DOI
[BF04] and . On two geometric theta lifts. Duke Math. J., 125(1):45–90, 2004.Google Scholar | DOI
[BHK+17] , , , , and . Modularity of generating series of divisors on unitary Shimura varieties. arXiv preprint , 2017.Google Scholar | arXiv
[BHT11] , , and . Constructing rational curves on K3 surfaces. Duke Math. J., 157(3):535–550, 04 2011.Google Scholar | DOI
[BK01] and . Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscripta Math., 106(4):443–459, 2001.Google Scholar | DOI
[BK03] and . Integrals of automorphic Green’s functions associated to Heegner divisors. Int. Math. Res. Not., 31:1687–1729, 2003.Google Scholar | DOI
[Bor98] . Automorphic forms with singularities on Grassmannians. Invent. Math., 132(3):491–562, 1998.Google Scholar | DOI
[Bor99] . The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J., 97(2):219–233, 1999.Google Scholar | DOI
[Bru02] . Borcherds products on O(2, ) and Chern Classes of Heegner Divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.Google Scholar
[BT05] and . Rational curves and points on K3 surfaces. Amer. J. Math., 127(4):825–835, 2005.Google Scholar | DOI
[BY09] and . Faltings heights of CM cycles and derivatives of -functions. Invent. Math., 177(3):631–681, 2009.Google Scholar | DOI
[CEJ16] , , and . On the distribution of the Picard ranks of the reductions of a K3 surface. arXiv e-prints, page , Oct 2016.Google Scholar | arXiv
[CGL19] , , and . Curves on K3 surfaces. arXiv e-prints, page , Jul 2019.Google Scholar | arXiv
[Cha14] . On the Picard number of K3 surfaces over number fields. Algebra Number Theory, 8(1):1–17, 2014.Google Scholar | DOI
[Cha18] . Exceptional isogenies between reductions of pairs of elliptic curves. Duke Math. J., 167(11):2039–2072, 08 2018.Google Scholar | DOI
[Che99] . Rational curves on surfaces. J. Alg. Geom, pages 245–278, 1999.Google Scholar
[CL13] and . Density of rational curves on surfaces. Math. Ann., 356(1):331–354, 2013.Google Scholar | DOI
[Con04] . Gross-Zagier revisited. In Heegner Points and Rankin -Series, volume 49 of Math. Sci. Res. Inst. Publ., pages 67–163. Cambridge Univ. Press, Cambridge, 2004. With an appendix by W. R. Mann.Google Scholar | DOI
[CT14] and . Variation of Néron-Severi ranks of reductions of surfaces. Exp. Math., 23(4):475–481, 2014.Google Scholar | DOI
[Del72] . La conjecture de Weil pour les surfaces K3. Invent. Math., 15:206–226, 1972.Google Scholar | DOI
[Del74] . La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., 43:273–307, 1974.Google Scholar | DOI
[Del79] . Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In Automorphic Forms, Representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 247–289. Amer. Math. Soc., Providence, R.I., 1979.Google Scholar | DOI
[DMOS82] , , , and . Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.Google Scholar | DOI
[EK95] and . Singular symmetric matrices. Duke Math. J., 79(2):515–547, 1995.Google Scholar | DOI
[Ger08] . Basic Quadratic Forms, volume 90 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.Google Scholar
[GS90] and . Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math., 72:93–174 (1991), 1990.Google Scholar
[Han04] . Local densities and explicit bounds for representability by a quadratic form. Duke Math. J., 124(2):351–388, 2004.Google Scholar | DOI
[HB96] . A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math., 481:149–206, 1996.Google Scholar
[HM17] and . Arithmetic of Borcherds products. ArXiv e-prints, October 2017.Google Scholar
[Hof14] . Borcherds products on unitary groups. Math. Ann., 358(3-4):799–832, 2014.Google Scholar | DOI
[Huy16] . Lectures on K3 Surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.Google Scholar | DOI
[Iwa97] . Topics in Classical Automorphic Forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.Google Scholar
[Kis10] . Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc., 23(4):967–1012, 2010.Google Scholar | DOI
[Kis17] . points on Shimura varieties of abelian type. J. Amer. Math. Soc., 30(3):819–914, 2017.Google Scholar | DOI
[KM90] and . Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Publ. Math., Inst. Hautes Étud. Sci., 71:121–172, 1990.Google Scholar | DOI
[KR00] and . Cycles on Siegel threefolds and derivatives of Eisenstein series. Ann. Sci. École Norm. Sup. (4), 33(5):695–756, 2000.Google Scholar | DOI
[KR14] and . Special cycles on unitary Shimura varieties II: Global theory. J. Reine Angew. Math., 697:91–157, 2014.Google Scholar
[KRY04] , , and . Derivatives of Eisenstein series and Faltings heights. Compos. Math., 140(4):887–951, 2004.Google Scholar | DOI
[KS67] and . Abelian varieties attached to polarized K3-surfaces. Math. Ann., 169:239–242, 1967.Google Scholar | DOI
[LL12] and . Rational curves on K3 surfaces. Inventiones mathematicae, 188(3):713–727, 2012.Google Scholar | DOI
[MM83] and . The uniruledness of the moduli space of curves of genus . In Algebraic Geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 334–353. Springer, Berlin, 1983.Google Scholar | DOI
[MP15] . The Tate conjecture for K3 surfaces in odd characteristic. Invent. Math., 201(2):625–668, 2015.Google Scholar | DOI
[MP16] . Integral canonical models for spin Shimura varieties. Compos. Math., 152(4):769–824, 2016.Google Scholar | DOI
[MST18] , , and . Reductions of abelian surfaces over global function fields. arXiv e-prints, page , Dec 2018.Google Scholar | arXiv
[MST22] , , and . Picard ranks of K3 surfaces and the Hecke orbit conjecture. Invent. Math., 228(3):1075–1143, 2022.Google Scholar | DOI
[Nie10] . The circle method with weights for the representation of integers by quadratic forms. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 377 (Issledovaniya po Teorii Chisel. 10):91–110, 243, 2010.Google Scholar
[Sar90] . Some Applications of Modular Forms, volume 99 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.Google Scholar | DOI
[Sch68] . Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J., 35:327–339, 1968.Google Scholar | DOI
[Sou92] . Lectures on Arakelov geometry, volume 33 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer.Google Scholar | DOI
[ST19] and . Exceptional splitting of reductions of abelian surfaces. Duke Math. J. 2019.Google Scholar
[Tan90] . Surfaces of K3 type over number fields and the Mumford-Tate conjecture. Izv. Akad. Nauk SSSR Ser. Mat., 54(4):846–861, 1990.Google Scholar
[Tan95] . Surfaces of K3 type over number fields and the Mumford-Tate conjecture. II. Izv. Ross. Akad. Nauk Ser. Mat., 59(3):179–206, 1995.Google Scholar
[Tay20a] . On the equidistribution of some Hodge loci. J. Reine Angew. Math., 762:167–194, 2020.Google Scholar | DOI
[Tay20b] . Rational curves on elliptic K3 surfaces. Math. Res. Lett., 27(4):1237–1247, 2020.Google Scholar | DOI
[Tay22] . Picard rank jumps for K3 surfaces with bad reduction. arXiv e-prints, page , March 2022.Google Scholar | arXiv
[Vas08] . Some cases of the Mumford-Tate conjecture and Shimura varieties. Indiana Univ. Math. J., 57(1):1–75, 2008.Google Scholar | DOI
[vG00] . Kuga-Satake varieties and the Hodge conjecture. In The Arithmetic and Geometry of Algebraic cyCles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 51–82. Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar
[vG08] . Real multiplication on K3 surfaces and Kuga-Satake varieties. Michigan Math. J., 56(2):375–399, 2008.Google Scholar | DOI
[Voi02] . Théorie de Hodge et géométrie algébrique complexe. Collection SMF. Société Mathématique de France, 2002.Google Scholar
[Wei49] . Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497–508, 1949.Google Scholar | DOI
[Zyw14] . The splitting of reductions of an abelian variety. Int. Math. Res. Not., 2014(18):5042–5083, 2014.Google Scholar | DOI
Cité par Sources :