On genus one mirror symmetry in higher dimensions and the BCOV conjectures
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994, a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of the Grothendieck–Riemann–Roch theorem, we offer a mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic Riemann–Roch theorem of Gillet–Soulé and our previous results on the BCOV invariant, we establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang–Lu–Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a Chowla–Selberg type theorem expressing it in terms of special $\Gamma $-values for certain Calabi–Yau manifolds with complex multiplication.
@article{10_1017_fmp_2022_13,
     author = {Dennis Eriksson and Gerard Freixas i Montplet and Christophe Mourougane},
     title = {On genus one mirror symmetry in higher dimensions and the {BCOV} conjectures},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.13/}
}
TY  - JOUR
AU  - Dennis Eriksson
AU  - Gerard Freixas i Montplet
AU  - Christophe Mourougane
TI  - On genus one mirror symmetry in higher dimensions and the BCOV conjectures
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.13/
DO  - 10.1017/fmp.2022.13
LA  - en
ID  - 10_1017_fmp_2022_13
ER  - 
%0 Journal Article
%A Dennis Eriksson
%A Gerard Freixas i Montplet
%A Christophe Mourougane
%T On genus one mirror symmetry in higher dimensions and the BCOV conjectures
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.13/
%R 10.1017/fmp.2022.13
%G en
%F 10_1017_fmp_2022_13
Dennis Eriksson; Gerard Freixas i Montplet; Christophe Mourougane. On genus one mirror symmetry in higher dimensions and the BCOV conjectures. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.13

[Bat94] Batyrev, V. V.. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom., 3(3):493–535, 1994.Google Scholar

[BB96] Batyrev, V. V. and Borisov, L. A.. Mirror duality and string-theoretic Hodge numbers. Invent. Math., 126(1), 1996.Google Scholar | DOI

[BCOV94] Bershadsky, M., Cecotti, S., Ooguri, H., and Vafa, C.. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys., 165(2):311–427, 1994.Google Scholar | DOI

[BD96] Batyrev, V. V. and Dais, D. I.. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology, 35(4):901–929, 1996.Google Scholar | DOI

[Beh97] Behrend, K.. Gromov-Witten invariants in algebraic geometry. Invent. Math., 127(3):601–617, 1997.Google Scholar

[BG14] Bini, G. and Garbagnati, A.. Quotients of the Dwork pencil. J. Geom. Phys., 75:173–198, 2014.Google Scholar | DOI

[BvS95] Batyrev, V. V. and Van Straten, D.. Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties. Comm. Math. Phys., 168(3):493–533, 1995.Google Scholar | DOI

[CdlOEvS20] Candelas, P., De La Ossa, X., Elmi, M., and Van Straten, D.. A one parameter family of Calabi-Yau manifolds with attractor points of rank two. J. High Energy Phys., (10):202, 73, 2020.Google Scholar

[CG11] Corti, A. and Golyshev, V.. Hypergeometric equations and weighted projective spaces. Sci. China Math., 54(8):1577–1590, 2011.Google Scholar | DOI

[CL12] Costello, K. and Li, S.. Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv e-prints, page , January 2012.Google Scholar | arXiv

[Del] Deligne, P.. Local behavior of Hodge structures at infinity. In Mirror symmetry, II, volume 1 of AMS/IP Stud. Adv. Math., pages 683–699.Google Scholar

[Del71] Deligne, P.. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.Google Scholar | DOI

[Del87] Deligne, P.. Le déterminant de la cohomologie. In Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), volume 67 of Contemp. Math., pages 93–177. Amer. Math. Soc., Providence, RI, 1987.Google Scholar

[DHZ98] Dais, D. I., Henk, M., and Ziegler, G. M.. All abelian quotient C.I.-singularities admit projective crepant resolutions in all dimensions. Adv. Math., 139(2):194–239, 1998.Google Scholar | DOI

[DHZ06] Dais, D. I., Henk, M., and Ziegler, G. M.. On the existence of crepant resolutions of Gorenstein abelian quotient singularities in dimensions . In Algebraic and geometric combinatorics, volume 423 of Contemp. Math., pages 125–193. Amer. Math. Soc., Providence, RI, 2006.Google Scholar | DOI

[DMOS82] Deligne, P., Milne, J. S., Ogus, A., and Shih, K.-Y.. Hodge cycles, motives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.Google Scholar | DOI

[Dol96] Dolgachev, I. V.. Mirror symmetry for lattice polarized surfaces. volume 81, pages 2599–2630. 1996. Algebraic geometry, 4.Google Scholar

[DY20] Dai, X. and Yoshikawa, K.-I.. Analytic torsion for log-Enriques surfaces and Borcherds product. arXiv e-prints, page , September 2020.Google Scholar | arXiv

[EFiMM18] Eriksson, D., Freixas I Montplet, G., and Mourougane, C.. Singularities of metrics on Hodge bundles and their topological invariants. Algebraic Geometry, 5:1–34, 2018.Google Scholar

[EFiMM21] Eriksson, D., Freixas I Montplet, G., and Mourougane, C.. BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures. Duke Math. J., 170(3):379–454, 2021.Google Scholar | DOI

[Eri08] Eriksson, D.. Formule de Lefschetz fonctorielle et applications géométriques. PhD thesis, Université Paris-Sud 11, 2008.Google Scholar

[EZT14] El Zein, F. and Tráng, Lê Dũng. Mixed Hodge structures. In Hodge theory, volume 49 of Math. Notes, pages 123–216. Princeton Univ. Press, Princeton, NJ, 2014.Google Scholar | DOI

[FLY08] Fang, H., Lu, Z., and Yoshikawa, K.-I.. Analytic torsion for Calabi-Yau threefolds. J. Differential Geom., 80(2):175–259, 2008.Google Scholar | DOI

[Fra92] Franke, J.. Riemann–Roch in functorial form. Unpublished, 1992.Google Scholar

[Fre17] Fresán, J.. Periods of Hodge structures and special values of the gamma function. Invent. Math., 208(1):247–282, 2017.Google Scholar | DOI

[FZ20] Fu, L. and Zhang, Y.. Motivic integration and the birational invariance of BCOV invariants. arXiv e-prints, page , July 2020.Google Scholar | arXiv

[Gäh13] Gährs, S.. Picard-Fuchs equations of special one-parameter families of invertible polynomials. In Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst. Commun., pages 285–310. Springer, New York, 2013.Google Scholar | DOI

[GKZ08] Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V.. Discriminants, resultants and multidimensional determinants. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008.Google Scholar

[Gri69] Griffiths, P. A.. On the periods of certain rational integrals. I, II. Ann. of Math. (2) 90 ( 1969 ), 460 495 ; ibid. (2), 90:496–541, 1969.Google Scholar | DOI

[Gro78] Gross, B. H.. On the periods of abelian integrals and a formula of Chowla and Selberg. Invent. Math., 45(2):193–211, 1978. With an appendix by David E. Rohrlich.Google Scholar | DOI

[GS90a] Gillet, H. and Soulé, C.. Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math., (72):93–174 (1991), 1990.Google Scholar

[GS90b] Gillet, H. and Soulé, C.. Characteristic classes for algebraic vector bundles with Hermitian metric. I. Ann. of Math. (2), 131(1):163–203, 1990.Google Scholar | DOI

[GS90c] Gillet, H. and Soulé, C.. Characteristic classes for algebraic vector bundles with Hermitian metric. II. Ann. of Math. (2), 131(2):205–238, 1990.Google Scholar | DOI

[GS92] Gillet, H. and Soulé, C.. An arithmetic Riemann-Roch theorem. Invent. Math., 110(3):473–543, 1992.Google Scholar | DOI

[Har66] Hartshorne, R.. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64 . With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin-New York, 1966.Google Scholar

[HSBT10] Harris, M., Shepherd-Barron, N., and Taylor, R.. A family of Calabi-Yau varieties and potential automorphy. Ann. of Math. (2), 171(2):779–813, 2010.Google Scholar | DOI

[Huy05] Huybrechts, D.. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.Google Scholar

[Ill94] Illusie, L.. Autour du théorème de monodromie locale. Astérisque, (223):9–57, 1994. Périodes -adiques (Bures-sur-Yvette, 1988).Google Scholar

[KMY18] Kawaguchi, S., Mukai, S., and Yoshikawa, K.-I.. Resultants and the Borcherds -function. Amer. J. Math., 140(6):1471–1519, 2018.Google Scholar | DOI

[KO68] Katz, N. M. and Oda, T.. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8:199–213, 1968.Google Scholar

[KP08] Klemm, A. and Pandharipande, R.. Enumerative geometry of Calabi-Yau 4-folds. Comm. Math. Phys., 281(3):621–653, 2008.Google Scholar | DOI

[LP07] Lee, J. and Parker, T.. A structure theorem for the Gromov-Witten invariants of Kähler surfaces. J. Differential Geom., 77(3):483–513, 2007.Google Scholar | DOI

[Mor93] Morrison, D. R.. Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Amer. Math. Soc., 6(1):223–247, 1993.Google Scholar | DOI

[Mor97] Morrison, D. R.. Mathematical aspects of mirror symmetry. In Complex algebraic geometry (Park City, UT, 1993), volume 3 of IAS/Park City Math. Ser., pages 265–327. Amer. Math. Soc., Providence, RI, 1997.Google Scholar | DOI

[MR04] Maillot, V. and Roessler, D.. On the periods of motives with complex multiplication and a conjecture of Gross-Deligne. Ann. of Math. (2), 160(2):727–754, 2004.Google Scholar | DOI

[MR12] Maillot, V. and Rössler, D.. On the birational invariance of the BCOV torsion of Calabi-Yau threefolds. Comm. Math. Phys., 311(2):301–316, 2012.Google Scholar | DOI

[SC67] Selberg, A. and Chowla, S.. On Epstein’s zeta-function. J. Reine Angew. Math., 227:86–110, 1967.Google Scholar

[Sch73] Schmid, W.. Variation of Hodge structure: the singularities of the period mapping. Invent. Math., 22:211–319, 1973.Google Scholar | DOI

[Ste77] Steenbrink, J.. Mixed Hodge structure on the vanishing cohomology. In Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pages 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.Google Scholar | DOI

[Ste76] Steenbrink, J.. Limits of Hodge structures. Invent. Math., 31(3):229–257, 1975/76.Google Scholar | DOI

[Voi99] Voisin, C.. Mirror symmetry, volume 1 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 1999. Translated from the 1996 French original by Roger Cooke.Google Scholar

[Voi07] Voisin, C.. Hodge theory and complex algebraic geometry. II, volume 77 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, english edition, 2007.Google Scholar

[Yas04] Yasuda, T.. Twisted jets, motivic measures and orbifold cohomology. Compos. Math., 140(2):396–422, 2004.Google Scholar | DOI

[Yos99] Yoshikawa, K.-I.. Discriminant of theta divisors and Quillen metrics. J. Differential Geom., 52(1):73–115, 1999.Google Scholar | DOI

[Yos04] Yoshikawa, K.-I.. surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space. Invent. Math., 156(1):53–117, 2004.Google Scholar | DOI

[Yos17] Yoshikawa, K.-I.. Analytic torsion for Borcea–Voisin threefolds. In Geometry, Analysis and Probability, volume 310 of Progress in Math., pages 279–361. Springer International Publisher, 2017.Google Scholar | DOI

[Zha20] Zhang, Y.. BCOV invariant and blow-up. arXiv e-prints, page , March 2020.Google Scholar | arXiv

[Zin08] Zinger, A.. Standard versus reduced genus-one Gromov-Witten invariants. Geom. Topol., 12(2):1203–1241, 2008.Google Scholar | DOI

[Zin09] Zinger, A.. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. J. Amer. Math. Soc., 22(3):691–737, 2009.Google Scholar | DOI

[ZZ08] Zagier, D. and Zinger, A.. Some properties of hypergeometric series associated with mirror symmetry. In Modular forms and string duality, volume 54 of Fields Inst. Commun., pages 163–177. Amer. Math. Soc., Providence, RI, 2008.Google Scholar

Cité par Sources :