New lower bounds for van der Waerden numbers
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that there is a red-blue colouring of $[N]$ with no blue 3-term arithmetic progression and no red arithmetic progression of length $e^{C(\log N)^{3/4}(\log \log N)^{1/4}}$. Consequently, the two-colour van der Waerden number $w(3,k)$ is bounded below by $k^{b(k)}$, where $b(k) = c \big ( \frac {\log k}{\log \log k} \big )^{1/3}$. Previously it had been speculated, supported by data, that $w(3,k) = O(k^2)$.
@article{10_1017_fmp_2022_12,
     author = {Ben Green},
     title = {New lower bounds for van der {Waerden} numbers},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.12/}
}
TY  - JOUR
AU  - Ben Green
TI  - New lower bounds for van der Waerden numbers
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.12/
DO  - 10.1017/fmp.2022.12
LA  - en
ID  - 10_1017_fmp_2022_12
ER  - 
%0 Journal Article
%A Ben Green
%T New lower bounds for van der Waerden numbers
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.12/
%R 10.1017/fmp.2022.12
%G en
%F 10_1017_fmp_2022_12
Ben Green. New lower bounds for van der Waerden numbers. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.12

[1] Ahmed, T., Kullmann, O. and Snevily, H., On the van der Waerden numbers , Discrete Appl. Math. 174 (2014), 27–51.Google Scholar | DOI

[2] Anderson, G. W., Guionnet, A. and Zeitouni, O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp.Google Scholar

[3] Behrend, F. A., On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331–332.Google ScholarPubMed | DOI

[4] Bloom, T. and Sisask, O., Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions, preprint (July 2020), .Google Scholar | arXiv

[5] Brown, T., Landman, B. M. and Robertson, A., Bounds on some van der Waerden numbers, J. Combinatorial Theory, Series A 115 (2008), 1304–1309.Google Scholar | DOI

[6] Delannay, R. and Le Caër, G., Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble, Phys. Rev. E (3) 62 (2000), 1526–1536.Google ScholarPubMed | DOI

[7] Elkin, M., An improved construction of progression-free sets, Israel. J. Math. 184, 93–128 (2011).Google Scholar | DOI

[8] Erdős, P. and Rényi, A., On some combinatorial problems, Publ. Math. Debrecen 4 (1956), 398–405.Google Scholar

[9] Fox, J. and Pohoata, C., Sets without -term progressions can have many shorter progressions, Random Structures and Algorithms 58 (2021), no. 3, 383–389.Google Scholar | DOI

[10] Graham, R., On the growth of a van der Waerden-like function, INTEGERS: Electronic journal of combinatorial number theory 6 (2006), A 29Google Scholar

[11] Green, B. J. and Wolf, J., A note on Elkin’s improvement of Behrend’s construction, in Additive Number Theory, 141–144, Springer, New York 2010.Google Scholar | DOI

[12] Green, B. J., 100 open problems, manuscript, available on request.Google Scholar

[13] Heath-Brown, D. R. and Pierce, L., Simultaneous integer values of pairs of quadratic forms, J. Reine Angew. Math. 727 (2017), 85–143.Google Scholar

[14] Hunter, Z., Improved lower bounds for van der Waerden numbers, to appear, Combinatorica.Google Scholar

[15] Kuzjurin, N., On the difference between asymptotically good packings and coverings, European Journal of Combinatorics 16 (1995), no. 1, 35–40.Google Scholar | DOI

[16] Li, Y. and Shu, J., A lower bound for off-diagonal van der Waerden numbers, Advances in Applied Mathematics 44 (2010), 243–247.Google Scholar | DOI

[17] Ostrowski, A. M., Sur l’approximation du déterminant de Fredholm par les déterminants des systémes d’equations linéaires, Ark. Math. Stockholm Ser. A, 26 (1938), pp. 1–15, reprinted in A. M. Ostrowski, Alexander Ostrowski: Collected Mathematical Papers, Vol. 1 (Determinants, Linear Algebra, Algebraic Equations), Birkhäuser, 1983, pp 60–74.Google Scholar

[18] Salem, R. and Spencer, D., On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 561–563.Google ScholarPubMed | DOI

[19] Schoen, T., A subexponential bound for van der Waerden numbers , Electronic J. Combinatorics 28 (2021), no. 2, P2.34.Google Scholar | DOI

Cité par Sources :