Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_12,
     author = {Ben Green},
     title = {New lower bounds for van der {Waerden} numbers},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.12/}
}
                      
                      
                    Ben Green. New lower bounds for van der Waerden numbers. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.12
[1] , and , On the van der Waerden numbers , Discrete Appl. Math. 174 (2014), 27–51.Google Scholar | DOI
[2] , and , An introduction to random matrices, Cambridge Studies in Advanced Mathematics 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp.Google Scholar
[3] , On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331–332.Google ScholarPubMed | DOI
[4] and , Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions, preprint (July 2020), .Google Scholar | arXiv
[5] , and , Bounds on some van der Waerden numbers, J. Combinatorial Theory, Series A 115 (2008), 1304–1309.Google Scholar | DOI
[6] and , Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble, Phys. Rev. E (3) 62 (2000), 1526–1536.Google ScholarPubMed | DOI
[7] , An improved construction of progression-free sets, Israel. J. Math. 184, 93–128 (2011).Google Scholar | DOI
[8] and , On some combinatorial problems, Publ. Math. Debrecen 4 (1956), 398–405.Google Scholar
[9] and , Sets without -term progressions can have many shorter progressions, Random Structures and Algorithms 58 (2021), no. 3, 383–389.Google Scholar | DOI
[10] , On the growth of a van der Waerden-like function, INTEGERS: Electronic journal of combinatorial number theory 6 (2006), A 29Google Scholar
[11] and , A note on Elkin’s improvement of Behrend’s construction, in Additive Number Theory, 141–144, Springer, New York 2010.Google Scholar | DOI
[12] , 100 open problems, manuscript, available on request.Google Scholar
[13] and , Simultaneous integer values of pairs of quadratic forms, J. Reine Angew. Math. 727 (2017), 85–143.Google Scholar
[14] , Improved lower bounds for van der Waerden numbers, to appear, Combinatorica.Google Scholar
[15] , On the difference between asymptotically good packings and coverings, European Journal of Combinatorics 16 (1995), no. 1, 35–40.Google Scholar | DOI
[16] and , A lower bound for off-diagonal van der Waerden numbers, Advances in Applied Mathematics 44 (2010), 243–247.Google Scholar | DOI
[17] , Sur l’approximation du déterminant de Fredholm par les déterminants des systémes d’equations linéaires, Ark. Math. Stockholm Ser. A, 26 (1938), pp. 1–15, reprinted in A. M. Ostrowski, Alexander Ostrowski: Collected Mathematical Papers, Vol. 1 (Determinants, Linear Algebra, Algebraic Equations), Birkhäuser, 1983, pp 60–74.Google Scholar
[18] and , On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 561–563.Google ScholarPubMed | DOI
[19] , A subexponential bound for van der Waerden numbers , Electronic J. Combinatorics 28 (2021), no. 2, P2.34.Google Scholar | DOI
Cité par Sources :
