Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_11,
     author = {Hamid Abban and Ziquan Zhuang},
     title = {K-stability of {Fano} varieties via admissible flags},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.11/}
}
                      
                      
                    Hamid Abban; Ziquan Zhuang. K-stability of Fano varieties via admissible flags. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.11
[1] , , and . Symmetries, quotients and Kähler-Einstein metrics. J. Reine Angew. Math., 591:177–200, 2006.Google Scholar
[2] and . Thresholds, valuations, and K-stability. Adv. Math., 365:107062, 2020.Google Scholar | DOI
[3] , , and . Openness of K-semistability for Fano varieties. 2019. To appear in Duke Math. J., .Google Scholar
[4] , , and . Optimal destabilization of K-unstable Fano varieties via stability thresholds. 2019. To appear in Geom. Topol., .Google Scholar
[5] and . Uniqueness of K-polystable degenerations of Fano varieties. Ann. of Math. (2), 190(2):609–656, 2019.Google Scholar | DOI
[6] , , , and . Valuation spaces and multiplier ideals on singular varieties. In Recent advances in algebraic geometry, volume 417 of London Math. Soc. Lecture Note Ser., pages 29–51. Cambridge Univ. Press, Cambridge, 2015.Google Scholar | DOI
[7] . Corps d’Okounkov (d’après Okounkov, Lazarsfeld-Mustaţ et Kaveh-Khovanskii). Astérisque, (361):Exp. No. 1059, vii, 1–41, 2014.Google Scholar
[8] and . Okounkov bodies of filtered linear series. Compos. Math., 147(4):1205–1229, 2011.Google Scholar | DOI
[9] and . Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry. Adv. Math., 378 (3):107501, 2021.Google Scholar | DOI
[10] , , and . Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 67(2):743–841, 2017.Google Scholar | DOI
[11] , , , and . Vanishing sequences and Okounkov bodies. Math. Ann., 361(3-4):811–834, 2015.Google Scholar | DOI
[12] and . Log-canonical thresholds for nonsingular Fano threefolds. Uspekhi Mat. Nauk, 63(5(383)):73–180, 2008.Google Scholar
[13] and . Delta invariants of smooth cubic surfaces. Eur. J. Math., 5(3):729–762, 2019.Google Scholar | DOI
[14] , , and . Kähler-Einstein metrics on Fano manifolds, I-III. J. Amer. Math. Soc., 28(1):183–197, 199–234, 235–278, 2015.Google Scholar | DOI
[15] and . Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4), 34(4):525–556, 2001.Google Scholar | DOI
[16] . On K-stability of finite covers. Bull. Lond. Math. Soc., 48(4):717–728, 2016.Google Scholar | DOI
[17] . Uniform stability of twisted constant scalar curvature Kähler metrics. Int. Math. Res. Not. IMRN, (15):4728–4783, 2016.Google Scholar | DOI
[18] . Scalar curvature and stability of toric varieties. J. Differential Geom., 62(2):289–349, 2002.Google Scholar | DOI
[19] , , , , and . Restricted volumes and base loci of linear series. Amer. J. Math., 131(3):607–651, 2009.Google Scholar
[20] . On -stability and the volume functions of -Fano varieties. Proc. Lond. Math. Soc. (3), 113(5):541–582, 2016.Google Scholar | DOI
[21] . K-stability of Fano manifolds with not small alpha invariants. J. Inst. Math. Jussieu, 18(3):519–530, 2019.Google Scholar | DOI
[22] . Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math., 59(2):399–418, 2019.Google Scholar | DOI
[23] . A valuative criterion for uniform K-stability of -Fano varieties. J. Reine Angew. Math., 751:309–338, 2019.Google Scholar | DOI
[24] and . On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 70(4):511–521, 2018.Google Scholar | DOI
[25] . Delta-invariants for Fano varieties with large automorphism groups. Internat. J. Math., 31(10):2050077, 31, 2020.Google Scholar
[26] , , and . ACC for minimal log discrepancies of exceptional singularities. 2019. .Google Scholar
[27] and . Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble), 62(6):2145–2209 (2013), 2012.Google Scholar | DOI
[28] . Okounkov bodies and restricted volumes along very general curves. Adv. Math., 223(4):1356–1371, 2010.Google Scholar | DOI
[29] . The Newton polytope, the Hilbert polynomial and sums of finite sets. Funktsional. Anal. i Prilozhen., 26(4):57–63, 96, 1992.Google Scholar
[30] and . Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13:31–47, 1973.Google Scholar
[31] . Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.Google Scholar | DOI
[32] . Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.Google Scholar | DOI
[33] and . Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4), 42(5):783–835, 2009.Google Scholar | DOI
[34] . K-semistability is equivariant volume minimization. Duke Math. J., 166(16):3147–3218, 2017.Google Scholar | DOI
[35] and . Stability of Valuations: Higher Rational Rank. Peking Math. J., 1(1):1–79, 2018.Google Scholar | DOI
[36] and . Stability of valuations and Kollár components. J. Eur. Math. Soc. (JEMS), 22(8):2573–2627, 2020.Google Scholar | DOI
[37] AIM Problem List. K-stability and related topics, 2020. available at http://aimpl.org/kstability.Google Scholar
[38] and . K-stability of cubic threefolds. Duke Math. J., 168(11):2029–2073, 2019.Google Scholar | DOI
[39] . Zariski-decomposition and abundance, volume 14 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2004.Google Scholar
[40] . A generalization of the Ross-Thomas slope theory. Osaka J. Math., 50(1):171–185, 2013.Google Scholar
[41] and . Alpha invariant and K-stability of -Fano varieties. Adv. Math., 229(5):2818–2834, 2012.Google Scholar | DOI
[42] and . K-stability of smooth del Pezzo surfaces. Math. Ann., 372(3-4):1239–1276, 2018.Google Scholar | DOI
[43] and . Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds. Pure Appl. Math. Q., 13(3):477–515, 2017.Google Scholar | DOI
[44] and . K-stability of birationally superrigid Fano varieties. Compos. Math., 155(9):1845–1852, 2019.Google Scholar | DOI
[45] . On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math., 101(1):101–172, 1990.Google Scholar | DOI
[46] . On Kähler-Einstein metrics on certain Kähler manifolds with . Invent. Math., 89(2):225–246, 1987.Google Scholar | DOI
[47] . Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 130(1):1–37, 1997.Google Scholar | DOI
[48] . K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math., 68(7):1085–1156, 2015.Google Scholar | DOI
[49] . A minimizing valuation is quasi-monomial. Ann. of Math. (2), 191(3):1003–1030, 2020.Google Scholar | DOI
[50] and . Delta invariants of projective bundles and projective cones of Fano type. 2020. To appear in Math. Z., .Google Scholar
[51] . Birational superrigidity and -stability of Fano complete intersections of index 1. Duke Math. J., 169(12):2205–2229, 2020. With an appendix by Zhuang and Charlie Stibitz.Google Scholar | DOI
Cité par Sources :
