K-stability of Fano varieties via admissible flags
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new algebraic proof of Tian’s criterion for K-stability, amongst other applications.
@article{10_1017_fmp_2022_11,
     author = {Hamid Abban and Ziquan Zhuang},
     title = {K-stability of {Fano} varieties via admissible flags},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.11/}
}
TY  - JOUR
AU  - Hamid Abban
AU  - Ziquan Zhuang
TI  - K-stability of Fano varieties via admissible flags
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.11/
DO  - 10.1017/fmp.2022.11
LA  - en
ID  - 10_1017_fmp_2022_11
ER  - 
%0 Journal Article
%A Hamid Abban
%A Ziquan Zhuang
%T K-stability of Fano varieties via admissible flags
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.11/
%R 10.1017/fmp.2022.11
%G en
%F 10_1017_fmp_2022_11
Hamid Abban; Ziquan Zhuang. K-stability of Fano varieties via admissible flags. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.11

[1] Arezzo, Claudio, Ghigi, Alessandro, and Pirola, Gian Pietro. Symmetries, quotients and Kähler-Einstein metrics. J. Reine Angew. Math., 591:177–200, 2006.Google Scholar

[2] Blum, Harold and Jonsson, Mattias. Thresholds, valuations, and K-stability. Adv. Math., 365:107062, 2020.Google Scholar | DOI

[3] Blum, Harold, Liu, Yuchen, and Xu, Chenyang. Openness of K-semistability for Fano varieties. 2019. To appear in Duke Math. J., .Google Scholar

[4] Blum, Harold, Liu, Yuchen, and Zhou, Chuyu. Optimal destabilization of K-unstable Fano varieties via stability thresholds. 2019. To appear in Geom. Topol., .Google Scholar

[5] Blum, Harold and Xu, Chenyang. Uniqueness of K-polystable degenerations of Fano varieties. Ann. of Math. (2), 190(2):609–656, 2019.Google Scholar | DOI

[6] Boucksom, S., De Fernex, T., Favre, C., and Urbinati, S.. Valuation spaces and multiplier ideals on singular varieties. In Recent advances in algebraic geometry, volume 417 of London Math. Soc. Lecture Note Ser., pages 29–51. Cambridge Univ. Press, Cambridge, 2015.Google Scholar | DOI

[7] Boucksom, Sébastien. Corps d’Okounkov (d’après Okounkov, Lazarsfeld-Mustaţ et Kaveh-Khovanskii). Astérisque, (361):Exp. No. 1059, vii, 1–41, 2014.Google Scholar

[8] Boucksom, Sébastien and Chen, Huayi. Okounkov bodies of filtered linear series. Compos. Math., 147(4):1205–1229, 2011.Google Scholar | DOI

[9] Boucksom, Sébastien and Eriksson, Dennis. Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry. Adv. Math., 378 (3):107501, 2021.Google Scholar | DOI

[10] Boucksom, Sébastien, Hisamoto, Tomoyuki, and Jonsson, Mattias. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 67(2):743–841, 2017.Google Scholar | DOI

[11] Boucksom, Sébastien, Küronya, Alex, Maclean, Catriona, and Szemberg, Tomasz. Vanishing sequences and Okounkov bodies. Math. Ann., 361(3-4):811–834, 2015.Google Scholar | DOI

[12] Cheltsov, I. A. and Shramov, K. A.. Log-canonical thresholds for nonsingular Fano threefolds. Uspekhi Mat. Nauk, 63(5(383)):73–180, 2008.Google Scholar

[13] Cheltsov, Ivan and Zhang, Kewei. Delta invariants of smooth cubic surfaces. Eur. J. Math., 5(3):729–762, 2019.Google Scholar | DOI

[14] Chen, Xiuxiong, Donaldson, Simon, and Sun, Song. Kähler-Einstein metrics on Fano manifolds, I-III. J. Amer. Math. Soc., 28(1):183–197, 199–234, 235–278, 2015.Google Scholar | DOI

[15] Demailly, Jean-Pierre and Kollár, János. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4), 34(4):525–556, 2001.Google Scholar | DOI

[16] Dervan, Ruadhaí. On K-stability of finite covers. Bull. Lond. Math. Soc., 48(4):717–728, 2016.Google Scholar | DOI

[17] Dervan, Ruadhaí. Uniform stability of twisted constant scalar curvature Kähler metrics. Int. Math. Res. Not. IMRN, (15):4728–4783, 2016.Google Scholar | DOI

[18] Donaldson, S. K.. Scalar curvature and stability of toric varieties. J. Differential Geom., 62(2):289–349, 2002.Google Scholar | DOI

[19] Ein, Lawrence, Lazarsfeld, Robert, Mustaţă, Mircea, Nakamaye, Michael, and Popa, Mihnea. Restricted volumes and base loci of linear series. Amer. J. Math., 131(3):607–651, 2009.Google Scholar

[20] Fujita, Kento. On -stability and the volume functions of -Fano varieties. Proc. Lond. Math. Soc. (3), 113(5):541–582, 2016.Google Scholar | DOI

[21] Fujita, Kento. K-stability of Fano manifolds with not small alpha invariants. J. Inst. Math. Jussieu, 18(3):519–530, 2019.Google Scholar | DOI

[22] Fujita, Kento. Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math., 59(2):399–418, 2019.Google Scholar | DOI

[23] Fujita, Kento. A valuative criterion for uniform K-stability of -Fano varieties. J. Reine Angew. Math., 751:309–338, 2019.Google Scholar | DOI

[24] Fujita, Kento and Odaka, Yuji. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 70(4):511–521, 2018.Google Scholar | DOI

[25] Golota, Aleksei. Delta-invariants for Fano varieties with large automorphism groups. Internat. J. Math., 31(10):2050077, 31, 2020.Google Scholar

[26] Han, Jingjun, Liu, Jihao, and Shokurov, V. V.. ACC for minimal log discrepancies of exceptional singularities. 2019. .Google Scholar

[27] Jonsson, Mattias and Mustaţă, Mircea. Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble), 62(6):2145–2209 (2013), 2012.Google Scholar | DOI

[28] Jow, Shin-Yao. Okounkov bodies and restricted volumes along very general curves. Adv. Math., 223(4):1356–1371, 2010.Google Scholar | DOI

[29] Khovanskiĭ, A. G.. The Newton polytope, the Hilbert polynomial and sums of finite sets. Funktsional. Anal. i Prilozhen., 26(4):57–63, 96, 1992.Google Scholar

[30] Kobayashi, Shoshichi and Ochiai, Takushiro. Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13:31–47, 1973.Google Scholar

[31] Kollár, János. Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.Google Scholar | DOI

[32] Lazarsfeld, Robert. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.Google Scholar | DOI

[33] Lazarsfeld, Robert and Mustaţă, Mircea. Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4), 42(5):783–835, 2009.Google Scholar | DOI

[34] Li, Chi. K-semistability is equivariant volume minimization. Duke Math. J., 166(16):3147–3218, 2017.Google Scholar | DOI

[35] Li, Chi and Xu, Chenyang. Stability of Valuations: Higher Rational Rank. Peking Math. J., 1(1):1–79, 2018.Google Scholar | DOI

[36] Li, Chi and Xu, Chenyang. Stability of valuations and Kollár components. J. Eur. Math. Soc. (JEMS), 22(8):2573–2627, 2020.Google Scholar | DOI

[37] AIM Problem List. K-stability and related topics, 2020. available at http://aimpl.org/kstability.Google Scholar

[38] Liu, Yuchen and Xu, Chenyang. K-stability of cubic threefolds. Duke Math. J., 168(11):2029–2073, 2019.Google Scholar | DOI

[39] Nakayama, Noboru. Zariski-decomposition and abundance, volume 14 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2004.Google Scholar

[40] Odaka, Yuji. A generalization of the Ross-Thomas slope theory. Osaka J. Math., 50(1):171–185, 2013.Google Scholar

[41] Odaka, Yuji and Sano, Yuji. Alpha invariant and K-stability of -Fano varieties. Adv. Math., 229(5):2818–2834, 2012.Google Scholar | DOI

[42] Park, Jihun and Won, Joonyeong. K-stability of smooth del Pezzo surfaces. Math. Ann., 372(3-4):1239–1276, 2018.Google Scholar | DOI

[43] Spotti, Cristiano and Sun, Song. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds. Pure Appl. Math. Q., 13(3):477–515, 2017.Google Scholar | DOI

[44] Stibitz, Charlie and Zhuang, Ziquan. K-stability of birationally superrigid Fano varieties. Compos. Math., 155(9):1845–1852, 2019.Google Scholar | DOI

[45] Tian, G.. On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math., 101(1):101–172, 1990.Google Scholar | DOI

[46] Tian, Gang. On Kähler-Einstein metrics on certain Kähler manifolds with . Invent. Math., 89(2):225–246, 1987.Google Scholar | DOI

[47] Tian, Gang. Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 130(1):1–37, 1997.Google Scholar | DOI

[48] Tian, Gang. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math., 68(7):1085–1156, 2015.Google Scholar | DOI

[49] Xu, Chenyang. A minimizing valuation is quasi-monomial. Ann. of Math. (2), 191(3):1003–1030, 2020.Google Scholar | DOI

[50] Zhang, Kewei and Zhou, Chuyu. Delta invariants of projective bundles and projective cones of Fano type. 2020. To appear in Math. Z., .Google Scholar

[51] Zhuang, Ziquan. Birational superrigidity and -stability of Fano complete intersections of index 1. Duke Math. J., 169(12):2205–2229, 2020. With an appendix by Zhuang and Charlie Stibitz.Google Scholar | DOI

Cité par Sources :