Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2022_10,
     author = {Matteo Costantini and Martin M\"oller and Jonathan Zachhuber},
     title = {The {Chern} classes and {Euler} characteristic of the moduli spaces of {Abelian} differentials},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/}
}
                      
                      
                    TY - JOUR AU - Matteo Costantini AU - Martin Möller AU - Jonathan Zachhuber TI - The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/ DO - 10.1017/fmp.2022.10 LA - en ID - 10_1017_fmp_2022_10 ER -
%0 Journal Article %A Matteo Costantini %A Martin Möller %A Jonathan Zachhuber %T The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials %J Forum of Mathematics, Pi %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/ %R 10.1017/fmp.2022.10 %G en %F 10_1017_fmp_2022_10
Matteo Costantini; Martin Möller; Jonathan Zachhuber. The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.10
[ACG11] , , and . Geometry of algebraic curves. Volume II. Vol. 268. Grundlehren der Mathematischen Wissenschaften. With a contribution by J. Harris. Heidelberg: Springer, 2011, pp. xxx+963.Google Scholar | DOI
[BCGGM1] , , , , and . “Compactification of strata of Abelian differentials.” In: Duke Math. J. 167.12 (2018), pp. 2347–2416.Google Scholar | DOI
[BCGGM2] , , , , and . “Strata of -differentials.” In: Algebr. Geom. 6.2 (2019), pp. 196–233.Google Scholar
[BCGGM3] , , , , and . The moduli space of multi-scale differentials. Preprint. 2019.Google Scholar | arXiv
[Ber19] . “Equivariant cohomology of moduli spaces of genus three curves with level two structure.” In: Geom. Dedicata 202 (2019), pp. 165–191.Google Scholar | DOI
[BHPSS20] , , , , and . Pixton’s formula and Abel-Jacobi theory on the Picard stack. (2020). to appear in: Acta Mathematica.Google Scholar | arXiv
[Boi15] . “Connected components of the strata of the moduli space of meromorphic differentials.” In: Comment. Math. Helv. 90.2 (2015), pp. 255–286.Google Scholar | DOI
[BT82] and . Differential forms in algebraic topology . Vol. 82. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982, pp. xiv+331.Google Scholar
[CC14] and . “ Extremal effective divisors on .” In: Math. Ann. 359.3-4 (2014), pp. 891–908.Google Scholar | DOI
[Che19] . “Tautological ring of strata of differentials.” In: Manuscripta Math. 158.3-4 (2019), pp. 345–351.Google Scholar | DOI
[CMSZ20] , , , and . “Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials.” In: Invent. Math. 222.1 (2020), pp. 283–373.Google Scholar | DOI
[CMZ19] , , and . The area is a good enough metric. (2019). to appear in: Ann. Inst. Fourier.Google Scholar | arXiv
[CMZ20] , , and . “diffstrata-A Sage package for calculations in the tautological ring of the moduli space of Abelian differentials.” In: Exp. Math. (2021), pp. 1–21. doi:.Google Scholar | DOI
[CS20] and . Framed mapping class groups and the monodromy of strata of Abelian differentials. preprint, . (2020). to appear in: J. Eur. Math. Soc.Google Scholar | arXiv
[Del70] . Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970, pp. iii+133.Google Scholar | DOI
[DS05] and . A first course in modular forms . Vol. 228. Graduate Texts in Mathematics. Springer-Verlag, New York, 2005, pp. xvi+436.Google Scholar
[DSZ21] , , and . “admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves.” In: J. Softw. Algebra Geom. 11.1 (2021), pp. 89–112.Google Scholar | DOI
[EFW18] , , and . “The algebraic hull of the Kontsevich-Zorich cocycle.” In: Ann. Math. (2) 188.1 (2018), pp. 281–313.Google Scholar | DOI
[EM18] and . “Invariant and stationary measures for the action on moduli space.” In: Publ. Math. Inst. Hautes Études Sci. 127 (2018), pp. 95–324.Google Scholar | DOI
[EMM15] , , and . “Isolation, equidistribution, and orbit closures for the action on moduli space.” In: Ann. Math. (2) 182.2 (2015), pp. 673–721.Google Scholar | DOI
[EMMW20] , , , and . “Billiards, quadrilaterals, and Moduli spaces.” In: J. Amer. Math. Soc. 33.4 (2020), pp. 1039–1086.Google Scholar | DOI
[EV86] and . “Logarithmic de Rham complexes and vanishing theorems.” In: Invent. Math. 86.1 (1986), pp. 161–194.Google Scholar | DOI
[EV92] and . Lectures on vanishing theorems. Vol. 20. DMV Seminar. Birkhäuser Verlag, Basel, 1992, pp. vi+164.Google Scholar | DOI
[Fil16] . “Splitting mixed Hodge structures over affine invariant manifolds.” In: Ann. Math. (2) 183.2 (2016), pp. 681–713.Google Scholar | DOI
[Fio17] . “A Riemann-Hurwitz theorem for the algebraic Euler characteristic.” In: Canad. Math. Bull. 60.3 (2017), pp. 490–509.Google Scholar | DOI
[FP18] and . “The moduli space of twisted canonical divisors.” In: J. Inst. Math. Jussieu 17.3 (2018), pp. 615–672.Google Scholar | DOI
[Ful98] . Intersection theory. Second. Vol. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998, pp. xiv+470.Google Scholar | DOI
[GP03] and . “Constructions of nontautological classes on moduli spaces of curves.” In: Michigan Math. J. 51.1 (2003), pp. 93–109.Google Scholar | DOI
[HM79] and . “Quadratic differentials and foliations.” In: Acta Math. 142.3-4 (1979), pp. 221–274.Google Scholar | DOI
[HS21] and . “Infinitesimal structure of the pluricanonical double ramification locus.” In: Compos. Math. 157.10 (2021), pp. 2280–2337.Google Scholar | DOI
[HZ86] and . “The Euler characteristic of the moduli space of curves.” In: Invent. Math. 85.3 (1986), pp. 457–485.Google Scholar | DOI
[KZ03] and . “Connected components of the moduli spaces of Abelian differentials with prescribed singularities.” In: Invent. Math. 153.3 (2003), pp. 631–678.Google Scholar | DOI
[Mas82] . “Interval exchange transformations and measured foliations.” In: Ann. of Math. (2) 115.1 (1982), pp. 169–200.Google Scholar | DOI
[Mum83] . “Towards an enumerative geometry of the moduli space of curves.” In: Arithmetic and geometry , Vol. II. Vol. 36. Progr. Math. Birkhäuser Boston, Boston, MA, 1983, pp. 271–328.Google Scholar | DOI
[MUW21] , , and . “Realizability of tropical canonical divisors.” In: J. Eur. Math. Soc. (JEMS) 23.1 (2021), pp. 185–217.Google Scholar | DOI
[SageMath] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0). https://www.sagemath.org. 2020.Google Scholar
[Sau18] . “Volumes and Siegel–Veech constants of and Hodge integrals.” In: Geom. Funct. Anal. 28.6 (2018), pp. 1756–1779.Google Scholar | DOI
[Sau19] . “Cohomology classes of strata of differentials.” In: Geom. Topol. 23.3 (2019), pp. 1085–1171.Google Scholar | DOI
[Sch18] . “Dimension theory of the moduli space of twisted -differentials.” In: Doc. Math. 23 (2018), pp. 871–894.Google Scholar
[SZ20] and . “Intersections of loci of admissible covers with tautological classes.” In: Selecta Math. (N.S.) 26.5 (2020), Paper No. 79, 69.Google Scholar | DOI
[Vee82] . “Gauss measures for transformations on the space of interval exchange maps.” In: Ann. of Math. (2) 115.1 (1982), pp. 201–242.Google Scholar | DOI
[Vee86] . “The Teichmüller geodesic flow.” In: Ann. Math. (2) 124 (1986), pp. 441–530.Google Scholar | DOI
Cité par Sources :
