The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent bundle of the compactification.The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of multi-scale differentials and computational tools in the Chow ring, such as a description of normal bundles to boundary divisors.
@article{10_1017_fmp_2022_10,
     author = {Matteo Costantini and Martin M\"oller and Jonathan Zachhuber},
     title = {The {Chern} classes and {Euler} characteristic of the moduli spaces of {Abelian} differentials},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/}
}
TY  - JOUR
AU  - Matteo Costantini
AU  - Martin Möller
AU  - Jonathan Zachhuber
TI  - The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/
DO  - 10.1017/fmp.2022.10
LA  - en
ID  - 10_1017_fmp_2022_10
ER  - 
%0 Journal Article
%A Matteo Costantini
%A Martin Möller
%A Jonathan Zachhuber
%T The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.10/
%R 10.1017/fmp.2022.10
%G en
%F 10_1017_fmp_2022_10
Matteo Costantini; Martin Möller; Jonathan Zachhuber. The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.10

[ACG11] Arbarello, E., Cornalba, M., and Griffiths, P.. Geometry of algebraic curves. Volume II. Vol. 268. Grundlehren der Mathematischen Wissenschaften. With a contribution by J. Harris. Heidelberg: Springer, 2011, pp. xxx+963.Google Scholar | DOI

[BCGGM1] Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., and Möller, M.. “Compactification of strata of Abelian differentials.” In: Duke Math. J. 167.12 (2018), pp. 2347–2416.Google Scholar | DOI

[BCGGM2] Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., and Möller, M.. “Strata of -differentials.” In: Algebr. Geom. 6.2 (2019), pp. 196–233.Google Scholar

[BCGGM3] Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., and Möller, M.. The moduli space of multi-scale differentials. Preprint. 2019.Google Scholar | arXiv

[Ber19] Bergvall, O.. “Equivariant cohomology of moduli spaces of genus three curves with level two structure.” In: Geom. Dedicata 202 (2019), pp. 165–191.Google Scholar | DOI

[BHPSS20] Bae, Y., Holmes, D., Pandharipande, R., Schmitt, J., and Schwarz, R. Pixton’s formula and Abel-Jacobi theory on the Picard stack. (2020). to appear in: Acta Mathematica.Google Scholar | arXiv

[Boi15] Boissy, C.. “Connected components of the strata of the moduli space of meromorphic differentials.” In: Comment. Math. Helv. 90.2 (2015), pp. 255–286.Google Scholar | DOI

[BT82] Bott, R. and Tu, L.. Differential forms in algebraic topology . Vol. 82. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982, pp. xiv+331.Google Scholar

[CC14] Chen, D. and Coskun, I.. “ Extremal effective divisors on .” In: Math. Ann. 359.3-4 (2014), pp. 891–908.Google Scholar | DOI

[Che19] Chen, D.. “Tautological ring of strata of differentials.” In: Manuscripta Math. 158.3-4 (2019), pp. 345–351.Google Scholar | DOI

[CMSZ20] Chen, D., Möller, M., Sauvaget, Adrien, and Zagier, D.. “Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials.” In: Invent. Math. 222.1 (2020), pp. 283–373.Google Scholar | DOI

[CMZ19] Costantini, M., Möller, M., and Zachhuber, J.. The area is a good enough metric. (2019). to appear in: Ann. Inst. Fourier.Google Scholar | arXiv

[CMZ20] Costantini, M., Möller, M., and Zachhuber, J.. “diffstrata-A Sage package for calculations in the tautological ring of the moduli space of Abelian differentials.” In: Exp. Math. (2021), pp. 1–21. doi:.Google Scholar | DOI

[CS20] Calderon, A. and Salter, N.. Framed mapping class groups and the monodromy of strata of Abelian differentials. preprint, . (2020). to appear in: J. Eur. Math. Soc.Google Scholar | arXiv

[Del70] Deligne, P.. Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970, pp. iii+133.Google Scholar | DOI

[DS05] Diamond, F. and Shurman, J.. A first course in modular forms . Vol. 228. Graduate Texts in Mathematics. Springer-Verlag, New York, 2005, pp. xvi+436.Google Scholar

[DSZ21] Delecroix, V., Schmitt, J., and Van Zelm, J.. “admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves.” In: J. Softw. Algebra Geom. 11.1 (2021), pp. 89–112.Google Scholar | DOI

[EFW18] Eskin, A., Filip, S., and Wright, A.. “The algebraic hull of the Kontsevich-Zorich cocycle.” In: Ann. Math. (2) 188.1 (2018), pp. 281–313.Google Scholar | DOI

[EM18] Eskin, A. and Mirzakhani, M.. “Invariant and stationary measures for the action on moduli space.” In: Publ. Math. Inst. Hautes Études Sci. 127 (2018), pp. 95–324.Google Scholar | DOI

[EMM15] Eskin, A., Mirzakhani, M., and Mohammadi, A.. “Isolation, equidistribution, and orbit closures for the action on moduli space.” In: Ann. Math. (2) 182.2 (2015), pp. 673–721.Google Scholar | DOI

[EMMW20] Eskin, A., Mcmullen, C., Mukamel, R., and Wright, A.. “Billiards, quadrilaterals, and Moduli spaces.” In: J. Amer. Math. Soc. 33.4 (2020), pp. 1039–1086.Google Scholar | DOI

[EV86] Esnault, H. and Viehweg, E.. “Logarithmic de Rham complexes and vanishing theorems.” In: Invent. Math. 86.1 (1986), pp. 161–194.Google Scholar | DOI

[EV92] Esnault, H. and Viehweg, E.. Lectures on vanishing theorems. Vol. 20. DMV Seminar. Birkhäuser Verlag, Basel, 1992, pp. vi+164.Google Scholar | DOI

[Fil16] Filip, S.. “Splitting mixed Hodge structures over affine invariant manifolds.” In: Ann. Math. (2) 183.2 (2016), pp. 681–713.Google Scholar | DOI

[Fio17] Fiori, A.. “A Riemann-Hurwitz theorem for the algebraic Euler characteristic.” In: Canad. Math. Bull. 60.3 (2017), pp. 490–509.Google Scholar | DOI

[FP18] Farkas, G. and Pandharipande, R.. “The moduli space of twisted canonical divisors.” In: J. Inst. Math. Jussieu 17.3 (2018), pp. 615–672.Google Scholar | DOI

[Ful98] Fulton, W.. Intersection theory. Second. Vol. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998, pp. xiv+470.Google Scholar | DOI

[GP03] Graber, T. and Pandharipande, R.. “Constructions of nontautological classes on moduli spaces of curves.” In: Michigan Math. J. 51.1 (2003), pp. 93–109.Google Scholar | DOI

[HM79] Hubbard, J. and Masur, H.. “Quadratic differentials and foliations.” In: Acta Math. 142.3-4 (1979), pp. 221–274.Google Scholar | DOI

[HS21] Holmes, D. and Schmitt, J.. “Infinitesimal structure of the pluricanonical double ramification locus.” In: Compos. Math. 157.10 (2021), pp. 2280–2337.Google Scholar | DOI

[HZ86] Harer, J. and Zagier, D.. “The Euler characteristic of the moduli space of curves.” In: Invent. Math. 85.3 (1986), pp. 457–485.Google Scholar | DOI

[KZ03] Kontsevich, M. and Zorich, A.. “Connected components of the moduli spaces of Abelian differentials with prescribed singularities.” In: Invent. Math. 153.3 (2003), pp. 631–678.Google Scholar | DOI

[Mas82] Masur, H.. “Interval exchange transformations and measured foliations.” In: Ann. of Math. (2) 115.1 (1982), pp. 169–200.Google Scholar | DOI

[Mum83] Mumford, D.. “Towards an enumerative geometry of the moduli space of curves.” In: Arithmetic and geometry , Vol. II. Vol. 36. Progr. Math. Birkhäuser Boston, Boston, MA, 1983, pp. 271–328.Google Scholar | DOI

[MUW21] Möller, M., Ulirsch, M., and Werner, A.. “Realizability of tropical canonical divisors.” In: J. Eur. Math. Soc. (JEMS) 23.1 (2021), pp. 185–217.Google Scholar | DOI

[SageMath] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0). https://www.sagemath.org. 2020.Google Scholar

[Sau18] Sauvaget, A.. “Volumes and Siegel–Veech constants of and Hodge integrals.” In: Geom. Funct. Anal. 28.6 (2018), pp. 1756–1779.Google Scholar | DOI

[Sau19] Sauvaget, A.. “Cohomology classes of strata of differentials.” In: Geom. Topol. 23.3 (2019), pp. 1085–1171.Google Scholar | DOI

[Sch18] Schmitt, J.. “Dimension theory of the moduli space of twisted -differentials.” In: Doc. Math. 23 (2018), pp. 871–894.Google Scholar

[SZ20] Schmitt, J. and Van Zelm, J.. “Intersections of loci of admissible covers with tautological classes.” In: Selecta Math. (N.S.) 26.5 (2020), Paper No. 79, 69.Google Scholar | DOI

[Vee82] Veech, W.. “Gauss measures for transformations on the space of interval exchange maps.” In: Ann. of Math. (2) 115.1 (1982), pp. 201–242.Google Scholar | DOI

[Vee86] Veech, W.. “The Teichmüller geodesic flow.” In: Ann. Math. (2) 124 (1986), pp. 441–530.Google Scholar | DOI

Cité par Sources :